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A Revised Approach to Orthodontic Treatment
Monitoring From Oralscan Video

Yan Tian , Guotang Jian , Jialei Wang , Hong Chen , Lei Pan , Zhaocheng Xu ,
Jianyuan Li , and Ruili Wang

Abstract—Research on orthodontic treatment moni-
toring from oralscan video is a new direction in dental
digitalization. We designed an approach to reconstruct,
segment, and estimate the pose of individual teeth to
measure orthodontic treatment. To handle the semantic
gap in heterogeneous data on the condition that they are
combined linearly, we present a multimedia interaction
network (MIN) to combine heterogeneous information in
point cloud segmentation by extending the graph attention
mechanism. Moreover, a structure-aware quadruple loss
is designed to explore the relation between multiple and
diverse unmatched points in point cloud registration. The
performance of our approach is evaluated on multiple tooth
registration datasets, and extensive experiments show
that our approach improves the accuracy by a margin of
1.4% in the inlier ratio on the Aoralscan3 dataset when it is
compared with prevailing approaches.
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I. INTRODUCTION

ORTHODONTIC treatment monitoring compares the cur-
rent orthodontic degree with the schedule to make a deci-

sion regarding whether the orthodontic plan should be adaptively
adjusted. The traditional method requires the patient to period-
ically visit a dental clinic, and the status of teeth is manually
examined by a dentist. However, it requires an abundance of
human resources, and the degree of orthodontic treatment cannot
be quantitatively measured.

Recently, some deep learning-based methods [1], [2] have
been proposed to automatically measure orthodontic treatment
by reconstructing, segmenting, and estimating the pose of in-
dividual teeth, as illustrated in Fig. 1(a). Given a mesh that is
reconstructed by using RGB images and depth images from an
intraoral scanner, geometric data (3D coordinates of points) and
visual data (color of points) are independently analyzed and then
linearly fused to segment each tooth on the jaw for further tooth
registration. However, geometry and visual data lie on different
manifolds, and relations among points learned from one field do
not match those in the other field; as a result, incompatible point
relations from different fields confuse the segmentor. Moreover,
in the registration stage, the number of unmatched points is
far greater than the number of matched points. Nevertheless,
cues on unmatched points are not fully exploited in the learning
procedure.

Motivated by the recent development of graph attention [3],
we argue that heterogeneous features can be represented and
combined by designing multiple graphs to enhance the discrim-
inant capacity. For the challenge of unmatched points in point
cloud registration, using the relation between unmatched points
to improve the model is also investigated.

In this article, a revised framework is proposed to mea-
sure orthodontic treatment, including 3D reconstruction, tooth
instance segmentation, and point cloud-based tooth regis-
tration. The framework of the proposed approach is illus-
trated in Fig. 2. Given the oralscan RGB-D video, the 3D
jaw model is first reconstructed by an on-the-shelf simulta-
neous localization and mapping (SLAM) method [4]. Then,
tooth instance segmentation based on SoftGroup [5] is per-
formed, in which a multimedia interaction network (MIN)
is designed to use local cues within a single graph and
across different graphs, which is illustrated in Fig. 1(b). Af-
ter that, a quadruple loss exploring structure information is
proposed in tooth registration, in which multiple and diverse
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Fig. 1. Illustration of the challenge of heterogeneous data fusion en-
countered in tooth instance segmentation. (a) Geometry data and vi-
sual data are independently analyzed and then linearly fused. (b) Our
approach uses the multimedia interaction network to learn the point
relation on geometry and visual graphs for fusion.

unmatched points are simultaneously exploited to improve the
robustness of tooth pose inference. Finally, the predicted
tooth pose is compared to the target pose to check whether the
orthodontic treatment is consistent with the schedule.

The contribution is highlighted by the following:
� We propose a deep learning-based framework to measure

orthodontic treatment, which reconstructs, segments, and
estimates the pose of individual teeth.

� We present a novel multimedia interaction network in
point cloud segmentation that extends graph attention to
effectively combine heterogeneous data by propagating
information though different graphs.

� We design a new loss function in point cloud registration
to explore the relation between the unmatched points by
measuring diversity among negative samples.

Experiments on tooth segmentation datasets and tooth regis-
tration datasets verify that our approach improves accuracy by
a margin of 1.4% in the inlier ratio when it is compared with
state-of-the-art approaches.

II. RELATED WORK

We briefly introduce the recent literature on orthodontic treat-
ment monitoring, point cloud instance segmentation, and point
cloud registration.

A. Orthodontic Treatment Monitoring

Orthodontic treatment monitoring is a new topic in dental
digitalization, and only a few studies have focused on it [6].
Some work monitored the status of the periodontal ligament by
using micro-Raman spectroscopy [7] or cone-beam computed
tomography (CBCT); nevertheless, the specific source or ex-
pensive equipment limited the scope of use. Therefore, oralscan
video that is captured from a smartphone is used to predict the
maxillary and mandibular arches [8]. However, the need for a
maxillary expander decreases the comfortability and simplic-
ity of a patient. Recent works detected [9] or segmented [1],
[2] individual teeth from the intraoral video and predicted the

corresponding 6D pose by using a deep learning method. Nev-
ertheless, these approaches infer tooth pose by comparing the
posed rendered image and the observed image, neglecting the
exploration of geometry knowledge in 3D space. For instance,
the pose of individual teeth can be regressed by a multilayer
perceptron (MLP) layer [10] or by detecting and matching tooth
landmarks on a 3D model [11], [12].

B. Point Cloud-Based Instance Segmentation

Point cloud-based instance segmentation has become a re-
search hotspot owing to the development of geometry deep
learning and dataset construction [13], [14]. It can be generally
classified into 2 categories: proposal-free and proposal-based
methods. The comparison of different categories of methods is
conducted in recent work [15].

Proposal-based methods convert the original instance seg-
mentation task into instance localization and mask inference
subtasks. The generative shape proposal network (GSPN) [16]
uses simulation to generate proposals, while Mask-MCNet [17]
and 3D-BoNet [18] directly infer bounding boxes from global
features. However, these methods generate redundant proposals
and are usually computationally expensive.

Proposal-free methods convert the instance segmentation task
into a grouping procedure after center prediction. A milestone is
pointGroup [19] and 3D-MPA [20], where the semantic segmen-
tation and the point offset toward the center of an instance are
simultaneously explored. Based on this framework, some works,
such as SSTNet [21] and HAIS [22], adjust the proposal size
by using the structure information. Specifically, DyCo3D [23]
and instance kernels [24] design dynamic kernels for unordered
and unstructured point cloud data to improve the localization
and representation capability, while Kd-Network [25] extracts
and aggregates features according to the subdivisions of the
point clouds on Kd-trees. TSegNet [26] employs a cascade
network structure to improve the predicted mask by combining
prediction confidence. However, the segments lack objectness
without explicitly recognizing boundaries. Recently, to handle
the low overlap between a real instance and a predicted instance
caused by hard one-hot semantic predictions, SoftGroup [5]
employed soft semantic scores for grouping. Nevertheless, the
effectiveness is restricted when the semantic gap occurs because
of linear combination in heterogeneous data. TSGCNet [27] is
a pioneering work using a graph-based method for data fusion;
however, the original approach is designed for the 3D position
and normal of point clouds, and the extension to other types of
data is unexplored.

C. Point Cloud Registration

Point cloud registration aligns two point clouds and estimates
the relative pose between them. Generally, there are four kinds
of point cloud registration methods:

The classical solution detects and extracts feature descriptors
for salient keypoints and then obtains putative correspondences
via feature matching. After that, the relative pose between two
point clouds is calculated by using random sampling consensus
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Fig. 2. Illustration of the proposed framework, including SLAM-based 3D reconstruction, tooth instance segmentation, and point cloud-based
tooth registration. The input is RGB images and depth images from an intraoral scanner. Rh and th represent the rotation and transition of tooth h.

Fig. 3. Illustration of the proposed approach in tooth instance segmentation. A multimedia interaction network is proposed to alleviate the semantic
gap. Some yellow arrows are employed to avoid misunderstandings caused by the intersection of arrows.

(RANSAC) and solving the Procrustes problem. Scan com-
pletion and pairwise matching are employed for low overlap
situations [28]. Nevertheless, these methods depend highly on
keypoint localization, and inaccurate keypoints deteriorate pose
inference.

Recent methods based on deep CNN estimate dense corre-
spondences with confidence scores between two point clouds
and select the top-k confident correspondences for rigid trans-
formation estimation [29], [30], [31]. These learning-based
methods can be faster and more robust than classical methods.
However, the number of unmatched points is far greater than the
number of matched points, and the information on unmatched
points is not fully exploited.

Some approaches regard point cloud registration as a re-
gression task, and directly learn rigid transformation from
the point cloud pair to position in relative pose space by
using T-net in PointNet [32] or learn the nonrigid mapping
by dividing objects into several rigid parts and inferring the
relative pose in each part [33]. Nevertheless, these methods
achieve weak performance owing to the neglect of geometric
knowledge.

The last kind of method employs the trial-and-evaluation
strategy, iteratively refining the pose of the source point cloud
and matching the transformed source point cloud to the target
point cloud [34], [35], [36]. Another pipeline employs deep
reinforcement learning to select transform action according
to the policy network and reward values, for instance, the
learning-based iterative closest point (ICP) [37], ReAgent [38],
and the cross-entropy method (CEM) [39]. Iteration meth-
ods have the advantage of generalization capacity. Never-
theless, multiple iterations are needed for optimum solution
determination.

III. OUR APPROACH

We designed a deep learning-based approach for orthodon-
tic treatment monitoring, including SLAM and tooth instance
segmentation and registration, and details are shown in Fig. 2.

A. Tooth Instance Segmentation

Our approach is based on SoftGroup [5], which follows the
multitask framework [40] and introduces soft semantic scores for
grouping. A multimedia feature interaction network is proposed
to alleviate the semantic gap between visual and geometric
features, which is illustrated in Fig. 3.

1) Review of SoftGroup: Given N points, including color
and coordinate values, a 3D U-Net network based on subman-
ifold sparse convolution (SSC) is employed as the backbone
to extract point features. Then, point features go through two
parallel branches to simultaneously predict semantic scores
S ∈ R

N×Nc and offset vectors O ∈ R
N×3, which are optimized

by cross-entropy loss and L1-norm regression loss, respectively,
where Nc = 2 separates tooth and gum regions in the jaw.
After that, offset vectors O are added to point coordinates to
obtain corresponding instance centers. Point subsets belonging
to each class are obtained by scanning semantic scores and
comparing them with a fixed threshold τ . Instance proposals
are generated by creating links between points with geomet-
ric distances smaller than a threshold b. Finally, an instance
feature extraction network is employed to extract and enhance
semantic features, and then, a multitask learning subnetwork is
implemented, inferring mask scores, instance masks, and classi-
fication scores, which are optimized by the L2-norm regression,
binary cross-entropy, and cross-entropy losses, respectively.
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Fig. 4. Comparison of fused feature maps using different fusion meth-
ods. The input point cloud comprises the 3D coordinates and color of
each point. Activation values of point features from low to high are rep-
resented by blue, green, yellow, and red. Linear fusion of geometry and
appearance generates indiscriminant point features (weak in locating
tooth center), while MIN fusion improves the discriminant capacity (good
at locating tooth center).

The advantage of SoftGroup is that it employs soft semantic
scores for grouping, which effectively handles the low overlap
between the predicted instance and the real instance caused by
the hard one-hot semantic predictions.

2) Multimedia Interaction Network: Geometric and visual
data describe the 3D model from multiple aspects. They lie on
different manifolds, and relations among points learned from one
field do not match those in the other field. If these incompatible
relations from different fields are directly fused, conflict infor-
mation may puzzle the segmentor to make any correct decision.
However, this principle is ignored in SoftGroup, which uses a
linear combination to combine heterogeneous data with different
patterns. An example is illustrated in Fig. 4. Activation values
of point features from low to high are represented by blue,
green, yellow, and red. Low activation values in the tooth center
demonstrate that features obtained by linear fusion lead to an
attenuation in discrimination.

Therefore, the MIN is proposed to improve context feature
extraction in instance segmentation using a graph-based method,
which is illustrated in Fig. 5. As visual and geometric data lie on
different manifolds, two graphs are constructed to represent the
point relation in visual and geometric fields, respectively. Local
information is propagated across different graphs by using graph
attention to interact with heterogeneous features by mapping
them into a common space.

We assume that the color and 3D coordinates of points can be
used to construct two graphs G1(V1,l,E1,l) and G2(V2,l,E2,l)
in layer l via K-nearest neighbors, where matrices V1,l =
{m1,l

1 ,m1,l
2 , . . . ,m1,l

N } andE1,l ⊆ |V1,l| × |V1,l| indicate sets
of nodes and edges constructed by using only the point
color information. The symbol m1,l

i is node i in layer l ∈
{1, 2, . . . , Lmax}; its corresponding feature is f1,li . The symbol
m1

ij is the edge of nodes i and j in layer l, and its corresponding

feature is f1,lij . Vectors V2,l, E2,l, m2,l
i , m2,l

ij , f2,li , and f2,lij

indicate similar meanings but only use point coordination.
Local features in the same graph and across different graphs

are used to update features via multilayer perceptron (MLP)

f̂1→1,l
i = MLP 1→1,l

u ([f1,li , f1,lij ]), (1)

f̂2→1,l
i = MLP 2→1,l

u ([f1,li , f2,lij ]), (2)

where [.] is the feature concatenation. After that, local features
are aggregated by using graph attention. Let i and j represent

Fig. 5. Illustration of the heterogeneous feature interaction module.
Note that only messages from graph G1 and G2 to graph G1 are
visualized for simplicity. The orange and purple arrows represent the
node updates. The golden and green arrows are interactions within the
same graph and across different graphs. The dot black box indicates
the feature concatenation. ‘SIM’ means similarity measure and ‘MLP’
denotes multilayer perception.

node indices in graph 1 and graph 2, respectively. Then, the
relation between these two points is expressed by node and edge
features sim(f1,li , f2,lij ) = (W1,lf1,li )T (W2,lf2,lij ). The multi-
dim attention weights are obtained by

α1→1,l
ij = sim(f1,li , f1,lij ) +MLP 1,l

c (f1,lij ), (3)

α2→1,l
ij = sim(f1,li , f2,lij ) +MLP 2,l

c (f2,lij ), (4)

where MLP 1,l
c (.) and MLP 2,l

c (.) score the importance of each
dimension of features in graph 1 and graph 2, respectively. Then,
context features e1→1,l+1

i in the same graph and e2→1,l+1
i across

the graph are calculated by

e1→1,l+1
i =

∑
mij

α1→1,l
ij � f̂1→1,l

i , (5)

e2→1,l+1
i =

∑
mij

α2→1,l
ij � f̂2→1,l

i , (6)

where � indicates the elementwise production. Finally, infor-
mation across graphs is ensembled by a mapping MLP 1,l+1

fu (.),

f1,l+1
i = MLP 1,l+1

fu ([e1→1,l+1
i , e2→1,l+1

i ], f1,li ). (7)

Compared with other interaction approaches, the proposed ap-
proach has several advantages: 1) The relation between visual
and geometry is progressively explored to alleviate the semantic
gap in heterogeneous data. 2) It is efficient to employ graph
attention to aggregate the local features in and across graphs to
improve the capability in geometry prediction. 3) The proposed
relation method can be used as a general module for heteroge-
neous data fusion.
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Fig. 6. Illustration of the point cloud registration module. Lepard is the baseline, and structure-aware quadruple loss is proposed. Given the source
point cloud S and target point cloud T, the KPFCN backbone samples the point cloud Ŝ, T̂ and extracts geometric features xŜ,xT̂. The position
codes and geometry features are then processed by several transform-matching-Procrustes (TMP) blocks, each including a transformer layer with
self and cross attentions, a differentiable matching layer, and a soft Procrustes layer to estimate the rigid fitting. The rigid fitting obtained from the
previous TMP block is used to update the source point cloud positions and features in the next TMP block.

B. Point Cloud-Based Tooth Registration

Our framework is illustrated in Fig. 6, where Lepard [29] is
employed as the baseline to handle repetitive geometry patterns.
The structure-aware quadruple loss is proposed to explore addi-
tional hard negative examples for matching learning.

1) Review of Lepard: Given the source point cloud S ∈
R

n×3 and target point cloud T ∈ R
m×3, where n and m are

the point numbers in each point cloud. The kernel point fully
convolutional network (KPFCN) [41] backbone Φ(.) extracts
point clouds Ŝ = Φ(S) ∈ R

n̂×3, T̂ = Φ(T) ∈ R
m̂×3 and local

geometry features xŜ ∈ R
n̂×d, xT̂ ∈ R

m̂×d, where n̂ and m̂
are the number of points Ŝ and T̂ and d is the dimension of
features. Then, rotary positional encoding [42] is employed to
enhance local features with position embedding. After that, sev-
eral transform-matching-Procrustes (TMP) blocks are employed
to infer the rigid transformation, each including a transformer
layer, a differentiable matching layer, and a soft Procrustes layer.
The transformer layer uses self-attention [43], [44] to explore
the global context features and cross-attention to further interact
with source and target point clouds. The matching layer obtains
the confidence matrix C between the source and target point
clouds. In the soft Procrustes layer, correspondence points with
top scores in confidence matrix C are selected and employed to
infer the rigid transformation by using the perspective-n-point
(PnP) method. The total loss in Lepard optimizes the warping
loss for point cloud warping and matching loss over the confi-
dence matrix C.

2) Structure-Aware Quadruple Loss: In point cloud registra-
tion, the number of positive samples (matching pairs between
different point clouds) is much lower than the number of negative
samples (nonmatching pairs between different point clouds).
However, the imbalance between negative and positive samples
is ignored in Lepard. Moreover, it is unnecessary to use all points

Fig. 7. Illustrations of different contrastive loss functions. (a) Cycle
loss. (b) Quadruple loss. (c) Structure-aware quadruple loss. ‘+’ rep-
resents the positive point, ‘−’ represents the negative points, and ‘P’
is the anchor point. The dotted arrow represents the structural relation
between negative points.

to take part in the learning procedure to prevent outliers and long
training times.

Motivated by structure knowledge in negative examples, we
propose extending the cycle loss to structure-aware quadruple
loss, exploring two or more hard negative examples for matching
learning, which is illustrated in Fig. 7. Additional knowledge
from hard negative samples constrains the matching function to
be smooth on the manifold and partially avoids the chance of
overfitting with limited resource consumption.

We assume that confidence C(i, j) measures the matching
degree between point i with features xŜ

i in the source point
cloud and point j with featuresxT̂

j in the target point cloud. Hard
sample mining can be adopted to distinguish the most difficult
negative examples for training. Then, the cycle loss is calculated
as follows:

Lf (i, j) = −E

[
log

C(i, pi)

C(i, pi) + maxj C(i, nj
i )

]
, (8)

where pi and nj
i indicate points indices in the target point cloud

marching (positive) and not matching (negative) point i in the
source point cloud.

To fully exploit the knowledge in negative examples, knowl-
edge from multiple hard negative examples is supplemented to
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constrain the matching relation. Note that features of different
hard samples may be neighbors in the confidence space. There-
fore, we design a mechanism to efficiently increase the diversity
in negative samples. Assume that n1

i = maxj C(i, nj
i ) is the

hardest sample selected in the proposal set. The second negative
sample is determined by the constraint that the relation to point i
in the source point cloud is strong, but the relation to the hardest
sample n1

i is weak:

n2
i = argmax

j
{C(i, nj

i )−C(n1
i , n

j
i )}. (9)

As a result, the feature loss in TMP block bt becomes a function
of one positive sample and two negative samples

Lbt
f (i, j) = −E

[
log

C(i, pi)

C(i, pi) +C(i, n1
i ) +C(i, n2

i )

]
. (10)

The total loss is a linear combination of the matching loss,
warping loss, and structure-aware quadruple loss as follows:

Ltotal =
∑
bt

(λmLbt
m + λwL

bt
w + Lbt

f ), (11)

where λm and λw balance the effects of matching loss and
warping loss, respectively.

Our structure-aware feature loss has some advantages: 1) The
structural knowledge in the point space (especially negative
points) is exploited to guide the optimization process; 2) Diverse
negative samples revise the confidence matrix from multiple
aspects and potentially improve the convergence; 3) Multiple
hard samples can be selected to increase the flexibility of the
approach.

IV. EXPERIMENTS AND RESULTS

We evaluate the effectiveness of our approach and compare it
with other approaches on publicly available datasets.

A. Materials and Methods

1) Dataset: We evaluate the proposed instance segmentation
approach on the Shining3D tooth segmentation dataset [45] and
the Aoralscan3 tooth segmentation dataset [46]. We evaluate
the proposed tooth point cloud registration approach on the
Shining3D tooth pose dataset [47] and the Aoralscan3 tooth
registration dataset [48]. Jaw models are generated from hospital
patients by oral scanning. The ground truth of the relative pose
of each tooth is generated by adding random jittering to the
tooth models. The training, validation, and testing sets in the
Shining3D tooth pose dataset contain 1,689, 150, and 150 sam-
ples, respectively. The constructed Aoralscan3 tooth registration
dataset includes 1,667 samples for training, 156 samples for
validation, and 176 samples for testing.

2) Evaluation Criteria: In tooth instance segmentation, the
mean average precision (mAP) at intersection-over-union(IoU)
thresholds of 25% and 50% are used as the evaluation criteria. In
tooth point cloud registration, the inlier ratio (IR), registration
recall (RR), and mean absolute error (MAE) are used as the
evaluation criteria. IR measures the fraction of correct corre-
spondences (threshold 0.1 mm) among the putative matches
[49], RR measures the fraction of correctly registered point
cloud pairs [49], and MAER/MAET measure the deviation

TABLE I
EXPERIMENTAL RESULTS WITH DIFFERENT BACKBONES ON THE SHINING3D

TOOTH SEGMENTATION DATASET

between the predicted tooth rotation (3D)/transition (3D) and
the corresponding ground truth. The units ofMAER andMAET

are degrees and millimeters, respectively.
3) Implementation Details: We conduct experiments on a

workstation with 2 Intel i7-4790 3.6 GHz CPUs, 64 GB of mem-
ory, and 4 NVIDIA RTX 3090Ti GPUs. Different approaches
are implemented based on PyTorch [50] to verify and compare
the performance.

In tooth instance segmentation, the number of points on the
jaw model is downsampled to 100 k by using random sampling.
Data augmentation, such as vertical/horizontal flipping, transla-
tion, rotation, and scaling, is employed to enlarge the dataset.
The SSC-based 3D U-Net is used as the backbone, including 4
layers, each downsampling the width and height of feature sizes
and doubling the channel dimension. The number of interaction
layers is selected as L = 4 according to the performance on
the evaluation set. The score threshold τ is set to 0.4, and the
grouping bandwidth b is set to 0.2 mm. The weights are updated
by Adam, with a weight decay of 3× 10−3 and a momentum of
0.9. The learning rate is adjusted to 4.0× 10−3 for the first 50 k
iterations and scheduled by cosine annealing for the following
70 k iterations. Each minibatch contains 4 samples.

In tooth point cloud registration, the number of input points
is downsampled to 4 k by using the RS. Data augmentation
methods such as rotation and translation are employed to enlarge
the dataset. The network is trained with Adam for 100 epochs and
the weight decay is 10−4. The batch size is 4. The learning rate
is adjusted to 2.0× 10−2 and decays exponentially by 5× 10−3

in each epoch. We set 0.1 mm as the threshold of the matching
radius.

B. Ablation Study

Extensive experiments are conducted to verify the effect of
several contributions in the proposed approach on the Shining3D
tooth segmentation or tooth pose dataset.

1) Tooth Instance Segmentation: Backbone: We select the
backbone according to its effectiveness, and the comparison is
reported in Table I. Note that values of mAP are multiplied
by 100. All approaches share the same setting except for the
backbone. Although PointNet and PointNet++ have been widely
used in point cloud analysis, operating on unordered point sets
limits the ability to capture fine-grained details. SSC-based 3D
U-Net is chosen as the backbone when both efficiency and
effectiveness are taken into consideration.

Parameters: Parameters are determined by grid searching,
which is illustrated in Fig. 8. Parameter values are listed on
the x-axis, and the performance expressed by mAP at an IoU
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Fig. 8. Parameter selection for the Shining3D tooth segmentation
dataset. Quantitative analysis of (a) score threshold τ and grouping
bandwidth b, (b) number of nearest neighbors K, number of the network
Lmax, layer number Lu, Lc, and Lfu.

Fig. 9. Parameter selection for the Shining3D tooth pose dataset.
Quantitative analysis of (a) the dimension d of feature maps, (b) the
TMP block number Ntmp, (c) threshold θc, and (d) weights α, γ, λm,
and λw in the loss function.

threshold of 50% is listed on the y-axis. The score threshold
τ = 0.4, grouping bandwidth b = 0.2 mm, number of nearest
neighbors K = 5, number of networks Lmax = 3, number of
layers inMLPu (Lu = 3), number of layers inMLPc (Lc = 3),
and number of layers in MLPfu (Lfu = 4) are selected in the
instance segmentation module.

2) Point Cloud-Based Tooth Registration: Parameters: The
dimension number d = 512, TMP block numberNtmp = 2, and
confidence threshold θc = 0.5 are determined by grid searching.
The performance comparison of different parameters is illus-
trated in Fig. 9(a)–(c). Low dimensions have limited representa-
tion capability, but unnecessarily high dimensions easily induce
overfitting.

Loss Function: Weights α and γ in the matching loss and
weights λm and λw to combine corresponding loss functions
are evaluated to select optimum values to control the effect
of various factors. The results of the evaluation experiments
are illustrated in Fig. 9(d). Only weights outperforming other
settings are used in the remaining experiments.

TABLE II
EFFECTIVENESS COMPARISON AMONG IMPORTANT MODULES ON THE
AORALSCAN3 TOOTH REGISTRATION DATASET AND SHINING3D TOOTH

POSE DATASET. THE SYMBOLS ‘MIN’ AND ‘SQL’ INDICATE THE MULTIMEDIA
INTERACTION NETWORK AND STRUCTURE-AWARE QUADRUPLE LOSS,

RESPECTIVELY

Fig. 10. Evaluations of different contributions on the Shining3D tooth
pose dataset. The symbols ‘GT’, ‘MIN’, and ‘SQL’ represent the ground
truth, multimedia interaction network, and structure-aware quadruple
loss, respectively. Red boxes highlight differences in results obtained by
the new module. Yellow regions represent unmatched regions between
the warped source and target point cloud.

Effectiveness: We evaluate the effectiveness of the multimedia
interaction network and structure-aware quadruple loss in point
cloud-based tooth registration. Comparisons of IR and RR at the
threshold of 0.1 mm are reported in Table II. Note that values of
IR and RR are multiplied by 100, and upper values are better.
The baseline uses SoftGroup [5] for instance segmentation and
Lepard [29] for tooth registration. When the multimedia inter-
action network is employed in SoftGroup, accurate segmented
masks help to improve the robustness in point cloud registration;
that is, the IR increases by 1.8% on the Shining3D tooth pose
dataset. Further IR improvement (1.1%) is achieved when the
structure-aware quadruple loss is employed in Lepard. The
outputs of different contributions are shown in Fig 10. Yel-
low regions represent unmatching regions between the warped
source and target point cloud (fewer yellow regions are better).
Multimedia interaction considers multiple cues to infer proper
tooth shapes, improving pose inference by avoiding the local
optimum. Structural knowledge in confidence space enhances
the capability to match correspondence points by simultaneously
exploring associations between positive and negative points and
relations among negative points.

Tooth Group: We compare the accuracy of point cloud-
based tooth registration on the Shining3D tooth pose dataset
by dividing teeth into different groups, for example, incisors,
canines, premolars, and molars. The experimental results are
reported in Table III. Incisors obtain the best accuracy as
more frames are captured in the 3D reconstruction stage to
jointly optimize the shape of the tooth. Molars are weak in
accuracy partially because the oralscan device cannot cap-
ture part of the molars, and incomplete shapes deteriorate the
results.
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TABLE III
EFFECTIVENESS COMPARISON AMONG IMPORTANT MODULES ON THE

SHINING3D TOOTH POSE DATASET

TABLE IV
EXPERIMENTAL RESULTS ON THE TEST SET OF THE AORALSCAN3 TOOTH

SEGMENTATION DATASET AND SHINING3D TOOTH SEGMENTATION DATASET

C. Evaluation of Tooth Instance Segmentation

We report the comparison obtained on the Shining3D tooth
segmentation dataset and Aoralscan3 tooth segmentation dataset
in Table IV. Codes are obtained from original papers if codes are
released by authors; otherwise, we reimplemented them. ‘*’ de-
notes the corresponding approach is reimplemented. Multitask
learning (semantic segmentation and offset prediction in parallel
branches) is a popular framework in point cloud instance seg-
mentation. Our approach improves the mAP@50 by 1.9% on the
Aoralscan3 dataset and 1.6% on the Shining3D dataset when it
is compared with SoftGroup [5], which verifies that multimedia
interaction improves the semantic gap in heterogeneous data.

Some results obtained using SSTNet, SoftGroup, and our
approach are illustrated in Fig. 11. Examples of accurate results
are illustrated in Fig. 11(a). Points of the second molar are error
prone in SSTNet and SoftGroup because of conflicts between
visual and geometric data. More reasonable outputs are obtained
in our approach in part because discrepancies in heterogeneous
data are explicitly represented and propagated to each other on
graphs, employing an attention mechanism to measure discrep-
ancy.

Examples of failure cases in tooth instance segmentation are
illustrated in Fig. 11(b). Although the semantic gap is alleviated
in our approach, the segmentation quality is partially affected by
the degree of teeth crowding. For instance, SSTNet obtains poor
result in the 1st premolar and our approach obtains inaccurate
result in the 2nd premolar, owing to the overlap between neigh-
boring teeth, which distorts the geometric features of normal
teeth. A potential solution is to use the geometric information of
the tooth root as guidance to discover the overlap between teeth
and rescue the segmentation results.

Fig. 11. Illustration of the results of SSTNet, SoftGroup, and our
approach obtained on the Shining3D tooth segmentation dataset. (a)
Accurate segmentation results. (b) Inaccurate segmentation results.
Different teeth are rendered by different colors. Black boxes highlight
discrepancies produced by different approaches.

D. Evaluation of Point Cloud-Based Tooth Registration

We report the results obtained on the Shining3D tooth pose
dataset and Aoralscan3 tooth registration dataset in Table V.
Recent data driven methods, including methods based on itera-
tion [35], sparse correspondence [56], [57] and dense correspon-
dence [29], [30], [31], obtain an obvious improvement over tra-
ditional geometric methods such as ICP. For instance, GeoTrans-
former obtains an IR of approximately 57.2% at the threshold
of 0.1 mm in both the Aoralscan3 tooth registration dataset and
the Shining3D tooth pose dataset. Dense correspondence shows
additional benefits when compared to sparse correspondence
in matching thanks to the robustness of occlusion handling.
Our approach improves the IR by 1.4% on the Aoralscan3
dataset and 1.2% on the Shining3D dataset when it is compared
with GeoTransformer [31], demonstrating that diversity negative
sample mining helps to improve the confidence in the matching
stage by exploring structure knowledge in confidence space.

Some examples of comparisons between our approach and
other point cloud registration methods are illustrated in Fig. 12.
Columns from left to right indicate the source point cloud, the
target point cloud, and the estimated results of REGTR, Lepard,
and our approach. Fig. 12(a) shows that our approach improves
effectiveness because of the use of the structure information of
negative points in confidence space.

From the inaccurate cases in Fig. 12(b), it can be found that
1) Although it is effective in terms of the structure-aware loss
function, the proposed approach is sensitive to the space between
teeth, especially gaps between molars and premolars. 2) The
proposed approach adopts cases in which teeth are arranged
with low gaps between each other.

E. Discussion

Orthodontic treatment monitoring is a novel and important
topic in digital dentistry. The technical details of this topic
are limited. Therefore, we design a framework to reconstruct,
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TABLE V
EXPERIMENTAL RESULTS ON THE TEST SET OF THE AORALSCAN3 TOOTH REGISTRATION DATASET AND THE SHINING3D TOOTH POSE DATASET

Fig. 12. Illustration of estimated results obtained on the Shining3D
tooth pose dataset. (a) Accurate estimation results. (b) Inaccurate esti-
mation results. Columns from left to right indicate the source point cloud,
the target point cloud, and the estimated results of REGTR, Lepard, and
our approach. Yellow regions represent unmatching regions between the
warped source and target point cloud.

segment, and register the tooth model by using only the oralscan
video. After a series of evaluation experiments, the effectiveness
of each module is demonstrated.

By using our treatment monitoring approach, the current
orthodontic degree can be compared with the schedule to make
a decision regarding whether the orthodontic plan should be
adaptively adjusted. The patient no longer needs to periodically
visit a dental clinic to measure the status of teeth by a dentist,
which is especially useful in the epidemic stage.

In tooth instance segmentation, both visual and geometric in-
formation play an important role in pointwise classification. The
relation between vision and geometry is progressively explored
to alleviate the semantic gap in heterogeneous data; Moreover,
employing graph attention to aggregate the local features in and
across graphs is efficient in improving the capability of geometry
prediction. However, segmentation quality is partially affected
by the degree of teeth crowding. The overlap between neigh-
boring teeth distorts the geometric features of normal teeth. The
geometric information of the tooth root is a potential solution to
discover the overlap between teeth and improve segmentation
quality.

In point cloud-based tooth registration, the structural knowl-
edge in the point space (especially negative points) is exploited to
guide the matching process. Diverse negative samples revise the
confidence matrix from multiple aspects and potentially improve
convergence. However, the proposed approach is sensitive to

the space between teeth, especially gaps between molars and
premolars. Moreover, the proposed approach adopts cases in
which teeth are arranged with low gaps between teeth.

Future work includes combining CBCT data to explore the
tooth root information to rectify the segmentation and regis-
tration results in cases of overlap between teeth. We will also
collect new data to extend our dataset with the aim of enhancing
the diversity of samples.

V. CONCLUSION

We propose a novel approach for orthodontic treatment mon-
itoring from oralscan video. We also propose a method that
combines heterogeneous features by exploiting graph attention
to alleviate the semantic gap. In addition, we propose a new
loss function that uses diversity and negative sample mining to
improve matching accuracy. In reconstructed tooth registration
datasets, our approach obtains an approximately 1.2–1.4% im-
provement over state-of-the-art methods.
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