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GRAB-Net: Graph-Based Boundary-Aware
Network for Medical Point Cloud Segmentation

Yifan Liu, Wuyang Li*, Jie Liu™, Hui Chen™, and Yixuan Yuan"', Member, IEEE

Abstract— Point cloud segmentation is fundamental in
many medical applications, such as aneurysm clipping
and orthodontic planning. Recent methods mainly focus
on designing powerful local feature extractors and gen-
erally overlook the segmentation around the boundaries
between objects, which is extremely harmful to the clinical
practice and degenerates the overall segmentation perfor-
mance. To remedy this problem, we propose a GRAph-based
Boundary-aware Network (GRAB-Net) with three paradigms,
Graph-based Boundary-perception Module (GBM), Outer-
boundary Context-assignment Module (OCM), and Inner-
boundary Feature-rectification Module (IFM), for medical
point cloud segmentation. Aiming to improve the segmen-
tation performance around boundaries, GBM is designed
to detect boundaries and interchange complementary infor-
mation inside semantic and boundary features in the graph
domain, where semantics-boundary correlations are mod-
elled globally and informative clues are exchanged by graph
reasoning. Furthermore, to reduce the context confusion
that degenerates the segmentation performance outside the
boundaries, OCM is proposed to construct the contextual
graph, where dissimilar contexts are assigned to points
of different categories guided by geometrical landmarks.
In addition, we advance IFM to distinguish ambiguous fea-
tures inside boundaries in a contrastive manner, where
boundary-aware contrast strategies are proposed to facil-
itate the discriminative representation learning. Extensive
experiments on two public datasets, IntrA and 3DTeethSeg,
demonstrate the superiority of our method over state-of-the-
art methods.

Index Terms—Point cloud segmentation, graph-based
framework, boundary-aware segmentation.

[. INTRODUCTION
OINT cloud segmentation is a fundamental technique
in a wide range of medical applications. For instance,
segmentation on 3D scanned data of dental models is ben-
eficial for dentists to simulate teeth extraction, deletion, and

Manuscript received 30 January 2023; revised 27 March 2023;
accepted 30 March 2023. Date of publication 6 April 2023; date of
current version 31 August 2023. This work was supported in part by
the Hong Kong Research Grants Council (RGC) Collaborative Research
Fund under Grant C4063-18G and in part by the Innovation and
Technology Commission-Innovation and Technology Fund under Grant
ITS/100/20. (Corresponding author: Yixuan Yuan.)

Yifan Liu and Yixuan Yuan are with the Department of Electronic Engi-
neering, The Chinese University of Hong Kong, Hong Kong, SAR, China
(e-mail: 1155195605@link.cuhk.edu.hk; yxyuan@ee.cuhk.edu.hk).

Wuyang Li and Jie Liu are with the Department of Electrical Engi-
neering, City University of Hong Kong, Hong Kong, SAR, China (e-mail:
wuyangli2-c@my.cityu.edu.hk; jliu.ee@my.cityu.edu.hk).

Hui Chen is with the Faculty of Dentistry, The University of Hong Kong,
Hong Kong, SAR, China (e-mail: amyhchen@hku.hk).

Digital Object Identifier 10.1109/TMI.2023.3265000

rearrangement, easing the prediction of treatment outcomes
[1], [2], [3], [4]. Another instance is the intracranial seg-
mentation on 3D vessel surfaces, which provides informa-
tive boundary clues for the aneurysm clipping surgery pro-
cess [5], [6]. In the clinical practice, one feasible way
is to manually segmenting objects, however, it is labor-
intensive and prone to inter-observer variability. Hence, there
is a high demand for accurate and reliable automatic point
cloud segmentation methods that can derive quantitative
assessments.

In recent years, many point cloud segmentation methods
have been proposed and they can be divided into three cate-
gories according to the design philosophy. Extractor-focused
methods [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19] exhaustively design various local feature
extractors to extract informative representations. Semantics-
enhanced methods [20], [21], [22] instead try to introduce
additional information to enhance the original semantic fea-
tures. Though incremental performance achieved, they can
hardly perform well around boundaries between objects, which
is harmful to the clinical practice since many operations, e.g,
aneurysm clipping [6] and teeth extraction [4], are performed
along the boundary lines. To address this problem, boundary-
aware methods [23], [24], [25] are proposed with boundary
perception and boundary-aware contrastive strategies. The
former strategy used in [23] and [24] is generally to perceive
boundaries using an extra branch and incorporate the predicted
boundary masks into the semantic features, while the latter one
used in [25] aims to distinguish ambiguous features around
boundaries in a contrastive manner [25].

Though improvements achieved around the boundary, there
are still two challenges in existing boundary-aware frame-
works [23], [24], [25]. Firstly, current methods directly com-
bine semantic and boundary features and model their rela-
tions by the local feature extraction, which overlooks the
global semantic and shape clues, causing insufficient duality
constraints. More specifically, semantic and shape clues are
hidden in respective features, and we expect the network
to globally perceive the two kinds of information, i.e., the
whole semantic distribution and the complete boundary shape,
which can provide sufficient constraints for the network to pro-
duce appropriate features for segmentation. However, existing
works merely perceive partial hidden information due to the
locality introduced in the feature extraction process. Besides,
directly combining two types of features adopted in current
methods is rather coarse, which increases the difficulty for the
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Fig. 1. lllustration of the context confusion during the convolution process
nearby the boundary.

network to capture the mutual association. To solve these lim-
itations, we use graph techniques to globally and finely model
the semantic-boundary correlations. In the graph domain,
duality correspondences can be represented by dynamically
constructed graph connections [26], [27], which can capture
global range dependencies. Based on that, graph convolution is
performed to adaptively exchange desired messages, providing
sufficient constraints to generate features equipped with finer
details.

The second challenge lies in the context confusion existing
in the feature extraction around boundary areas, which further
causes ambiguous representations, i.e., the feature ambiguity
problem. For example, as shown in Fig.1, points A and B
are close in the coordinate space, therefore their contexts, i.e,
the participants of the feature extraction, would be confused
with high similarities. This context confusion can induce the
network to produce similar features and further the same
category predictions, while the two points should belong to
different categories. To remedy this issue, for features outside
the predicted boundaries, we are committed to assigning
dis-similar contexts to points of different categories. Consider-
ing boundaries are natural geometrical landmarks for different
categories, we can reformulate contexts as graph connections
and cut off connections across the predicted boundaries, which
ensures that points outside the predicted boundaries are only
connected to the same-sided, i.e., the same-category points,
and thus contexts of different categories are differentiated.
While for the features inside the boundaries that have no
side concept, we design a boundary-aware contrastive learning
paradigm to reduce the feature ambiguity, where two types of
contrast are advanced to achieve the discriminative represen-
tation learning.

To sum up, we propose a GRAph-based Boundary-aware
Network (GRAB-Net) for medical point cloud segmen-
tation with three novel paradigms. Firstly, We design a
Graph-based Boundary-perception Module (GBM) to model
semantics-boundary correlations in the graph domain, where
relations can be modeled and complementary information can
be inter-exchanged in a global manner. Secondly, to solve the
context confusion problem outside the boundaries, we estab-
lish an Quter-boundary Context-assignment Module (OCM),
where a contextual graph is constructed to assign appropriate
contexts to each point, refining the confused features with the
following graph reasoning layers. Finally, to further reduce
the feature ambiguity inside the boundary areas, an Inner-
boundary Feature-rectification Module (IFM) is proposed to
differentiate these features in a contrastive manner. To be
summarized, our contributions are as follows.

o We propose a GRAph-based Boundary-aware Network
(GRAB-Net) for point cloud segmentation. To the best
of our knowledge, this work represents the first effort to
improve the segmentation performance around boundaries
in the medical point cloud segmentation task.

« We propose a novel graph-based boundary perception
module GBM, which globally builds duality correlations
and inter-exchange complementary information in the
graph domain, producing features of better quality.

o We advance two novel paradigms OCM and IFM, which
solves the context confusion and reduces the feature
ambiguity outside and inside boundaries, respectively.
OCM assigns appropriate context to points by leveraging
conditional graph connections, and IFM distinguishes
features inside boundaries in a contrastive manner.

« We validate the effectiveness of our proposed GRAB-Net
in different medical point cloud segmentation tasks,
including 3D intracranial aneurysm segmentation and 3D
teeth segmentation. Comprehensive experiments testify
that our method can surpass previous methods with large
improvements.

[1. RELATED WORK
A. Surface Model Segmentation in Medical Domain

Recently, many automatic methods [3], [4], [6], [28], [29]
for 3D surface model segmentation in medical scenarios
have been investigated. Generally, they can be divided into
mesh-based and point-based based on the input 3D data
format [4].

Mesh-based methods [3], [28], [29] take triangle meshes
as input, and produce corresponding labels for each mesh.
Reference [3] proposes to extract multi-scale local contextual
features via cascaded graph-constrained learning modules.
Reference [28] adopts two graph-learning streams to extract
discriminative feature representations from coordinates and
normals space. Recently, [29] further advances a two-stage
framework to segment meshes and regress anatomical land-
marks simultaneously. The limitation of mesh-based methods
lies in that triangle meshes are required besides raw point
clouds, and they may also introduce inappropriate shape biases
since triangle meshes are only local planar approximations of
the real surface model.

In contrast, point-based methods [4], [6], i.e., point cloud
segmentation methods, can directly process the raw point
clouds and excavate the hidden topology information in a
learnable manner, thus we follow this line of works in this
paper. In [6], a public 3D aneurysm segmentation dataset IntrA
is proposed and many representative works [7], [8], [9], [11],
[30], [31] in general 3D vision are implemented on this dataset,
revealing the transfer-ability of 3D segmentation methods
from general domain to medical domain. Then [4] proposes
a two-stage instance segmentation framework for intra-oral
scan segmentation, which detects teeth centroids in the first
stage, and then classifies the foreground and background in
the following stage.

Though impressive performances achieved, these methods
overlook the segmentation around boundaries, which is crucial
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to the segmentation in medical scenarios. Besides, these meth-
ods are limited to the specific application, while our proposed
GRAB-Net is a general boundary-aware framework for point
cloud segmentation in medical scenarios.

B. Point Cloud Segmentation

Recently, various methods [7], [8], [11], [13], [14], [18],
[20], [21], [22], [23], [24], [25], [32] for point cloud segmen-
tation have been proposed, and they can be grouped into three
lines according to the design philosophies.

Extractor-focused methods [7], [8], [9], [10], [11], [12],
[13], [14], [16], [17], [18], [33] focus on designing effi-
cient and effective local feature extractors. This line of
work is pioneered by PointNet [7], which firstly utilizes
permutation-invariant MLPs and MaxPoolings to directly pro-
cess the raw point clouds. To further capture local patterns,
PointNet++ [8] advances to build a hierarchical structure by
applying PointNet recursively. Afther that, PointConv [11]
and KPConv [13] borrow the idea from 2D convolutions,
successfully applying discrete 3D convolutions on the point
cloud. Besides, graph-based method DGCNN [32] is also
proposed to build local graphs dynamically across layers.
More recently, inspired by the success of transformers in
2D vision community [34], [35], [36], PointTransformer [18]
is advocated for point-based 3D segmentation with modified
local transformers.

Semantics-enhanced methods [20], [21], [22] expect to
enhance the original semantic features by introducing addi-
tional information. Reference [20] advances a bilateral aug-
mentation strategy to enhance the local geometrical and
semantic context. Reference [21] proposes to incorporate
global context during the local aggregation process, and [22]
designs a category-guided aggregation module, utilizing dif-
ferent aggregation strategies between the same categories and
different categories.

Boundary-aware methods [23], [24], [25] aim at improving
the segmentation performance around boundaries, which are
inspired by many works in 2D image processing [37], [38],
[39], [40]. Reference [23] tries to improve the segmentation
performance by jointly optimizing the semantics and boundary
branches with shared encoders. Reference [24] proposes to
incorporate the predicted boundary masks into semantic fea-
tures during the feature extraction process. Recently, [25] is
designed to distinguish ambiguous features around boundaries
by leveraging contrastive learning techniques.

Though improvements around the boundary, these methods
overlook the global semantics-boundary correlations and thus
are insufficient in duality constraints. Besides, they ignore the
context confusion problem during the feature extraction, which
inevitably leads to ambiguous features. In this work, we pro-
pose a GRAB-Net framework to tackle these challenges, which
models semantics-boundary correlations globally in the graph
domain, and assign different contexts to points of different
categories to reduce the feature ambiguity.

[1l. METHOD

In this work, we propose GRAB-Net for medical point
cloud segmentation. It consists of three key components:

Graph-based Boundary-perception Module (GBM), Outer-
boundary Context-assignment Module (OCM), and Inner-
boundary Feature-rectification Module (IFM). The whole
framework workflow is illustrated in Fig. 2. Specifically, given
the input point cloud I € RN*C composed of coordinates
P € RY*3 and other attributes like normals, where N is the
number of points, we first utilize a dual-branch backbone with
shared encoders to extract semantic feature X* € RY*P and
boundary feature X? € RN*P, where D is the feature dimen-
sion. To explicitly model semantics-boundary relations in the
graph domain, GBM (§ III-A) projects point-level features X*
and X? into the semantic nodes V* and boundary nodes V?,
and then relations across V* and V? are globally modelled and
duality information are exchanged to obtain the updated graph
nodes V* and V?, which are further re-projected into point-
level features X* and X”. Then OCM (§ I-B) is proposed
to solve the context confusion problem by assigning contexts
of each point. In particular, the semantic feature X* and the
boundary indicators y? generated from X? are used to build
the contextual graph G° outside the predicted boundaries,
based on which graph convolution is performed to generate
the refined feature X*. Finally, to further reduce the feature
ambiguity inside the boundaries, IFM (§ III-C) is proposed to
project the semantic feature X into the embedding space E,
distinguishing these embeddings in a contrastive manner with
a dynamically updated memory bank M.

A. Graph-Based Boundary-Perception Module

Sufficiently leveraging duality constraints hidden in seman-
tic and boundary features is necessary for accurate segmen-
tation around the boundaries, which is crucial to several
medical applications, e.g, aneurysm clipping [6] and teeth
extraction [4]. To fulfill this need, we propose GBM to
globally explore the duality constraints in the graph domain,
where point-level features X are first projected into coherent
nodes V, then correlations are modelled globally to generate
updated nodes V, and finally, nodes are re-projected to obtain
point-level features X.

1) Coherent Node Projection: Instead of directly construct-
ing a graph on point-level features, which is computationally
intensive and not robust to noise, we design the coherent node
projection to project point-level features X*, X* ¢ RN*P
from the backbone into more compact features V*, V? e
RM*D(M < N), and treat them as semantic and boundary
graph nodes, respectively.

In particular, a subset P*** € RM>3 (red points in Fig. 3)
are first uniformly sampled from the original point cloud
P e RN*3 by using the farthest point sampling (FPS)
algorithm. Then, for each sampled point Pl:mb , k1 nearest
neighbors (including Pl.“‘b) are searched in P to compose
the neighborhood N (Pf”b). Finally, the features of these
neighbors are aggregated in a permutation-invariant way:

Vi = y(MAX (h(Xp)))). Pj € N, (PF*?) (1)

where Xp; € X is the corresponding feature of point P;, y, h
are multi-layer perceptron (MLP) layers, M AX is conducted
along the point dimension, and V; € RP is the aggregated
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Fig. 2.

lllustration of the proposed framework, composed of (a) Graph-based Boundary-perception Module (GBM), (b) Outer-boundary Context-

assignment Module (OCM), and (c) Inner-boundary Feature-rectification Module (IFM). Input point clouds are fed into the dual-branch network to
extract the semantic feature and boundary feature respectively. GBM models and inter-exchanges correlations between point and boundary features
via Duality Graph Reasoning (DGR). Finally, IFM further reduce the feature ambiguity inside boundaries in a contrastive manner.
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Fig. 3. lllustration of the coherent node projection process.

graph node of sampled point Pl-s’”’ . By aggregating neigh-
boring semantic and boundary features X* and X? of each
sampled point P/ b \e can obtain the semantic and boundary
graph nodes V* and V?, respectively.

2) Duality Graph Reasoning (DGR): Given projected seman-
tic nodes V* and boundary nodes V?, we can build the duality
graph G¢ = (V, A) to facilitate the information exchange.
Specifically, the vertice set V € R**P is the combination
of VS and V2: v = [(VH)T, (v?)T]T and A € R#M*2M g the
affinity matrix that represents the correlations between node

features:
0 Ab—)s
A= ( i O) , @

where A7 = {Af’fs} € RMXM a5sembles the correlation
weight from j-th node of V? to i-th node of V*, and A*™? is
explained reversely. To obtain the coefficient A? 75, attention
mechanism that can capture long-range dependencies is used:

AV = p@ (V) = (V]) + 8(Pi — P)))), 3)

where ¢, ¢ are single MLP layers, and p, 6§ are MLP
mapping functions with two linear layers and one ReLU non-
linearity. The subtraction between ¢(Vis ) and 1//(V}’ ) encodes

feature relations between semantic and boundary nodes, and
8(P; — Pj) reflects the relative geometrical correspondences.
Analogously, A*~? can also be obtained. With computed
adjacency matrix A, we can incorporate boundary/semantics
information into the semantics/boundary feature by:

V=A-a(V)+V, (4)

where V. = [(V)T, (VO)T]T e RIMXD ig the updated
graph nodes, and o is a single MLP layer. In doing so,
the complementary information is inter-exchanged between
semantic and boundary nodes globally, providing sufficient
duality constraints for the feature generation.

3) Distance-Aware Node Re-Projection: To obtain point-
level predictions, the three-nearest distance-aware interpo-
lation strategy [7], [8] is adopted to re-project node-level
features V € RM*D into point-level features X € RV*D,
The re-projected point-level semantic feature X* and bound-
ary feature X’ are further passed to MLP layers to obtain
logits Y* and Y7, supervised by cross-entropy loss £, =
— LN CE® YY) and £, = - 3N CEQXP, v¥,
where Y38' and Y%8 are semantic and boundary annotations,
respectively. Guided by the two losses, the informative correla-
tions between semantics and boundaries can be fully excavated
in a learnable way, and such correlations are then used to
generate enhanced semantic and boundary features.

B. Outer-Boundary Context-Assignment Module

The context confusion nearby boundaries during the feature
extraction could confuse the network to produce ambiguous
features, degenerating the medical point cloud segmenta-
tion performance around boundaries. To tackle this problem,
we propose OCM to assign contexts of each point nearby
boundaries by leveraging graph techniques. As shown in
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Fig. 4. lllustration of the context graph construction and reasoning
procedure.

Fig. 2(b), we first construct a contextual graph to reformulate
the context of each point as graph connections, and condi-
tionally establish the connections with the guidance of the
predicted boundaries. Based on the constructed contextual
graph, graph reasoning is performed to rectify the original
ambiguous features with newly clarified context.

1) Contextual Graph Construction: To assign contexts of
points outside the boundaries, we treat each point as a graph
node and represent the context of a certain node as graph adja-
cency with other nodes. In this way, the context assignment
can be achieved by controlling graph connections.

Inspired by this observation, a contextual graph G¢ =
(V€, E°) is constructed, where V¢ = X* since we expect
to refine these semantic features, and E¢ € {0, 1}‘VU|X|VC‘
is the adjacency matrix that describes the connections of
nodes. Then, considering boundaries are natural geometrical
landmarks for different categories, we can separate contexts
of points of different categories by cutting off connections
across the predicted boundary points B, which is obtained
from boundary logits Y?:

B ={Pilargmax(Y?) =1,i € {1,..., N}}, (5)

and points in B are treated as inner-boundary points P;,, while
the rest points are defined as outer-boundary points Ppy;:

Pin=B’P0ut=P_Bv (6)

With obtained inner-boundary points P;,, the connections
between i-th and j-th point EY j is defined as below:

1, (Pj € Nip(Pi) A(d(Pi, Pj) < min d(P;, Py)),
Elc,]‘: PreP;,
0, otherwise,
where A refers to the logical and. As shown in Fig. 4, for the
i-th point (red circles or triangles), the first term P; € Ni, (Pr)
provides basic contexts of k> nearest neighbors (blue dashes),
and the second term constrains the distance between i-th point
and j-th neighbor, ensuring it can not equal or exceed the
minimum distance between i-th point and boundaries points
in B (invalid connections are cut off by red cross). In this
way, connections across the boundaries are prohibited, and
points outside the boundary P,,; with the context confusion
problem, are assigned with appropriate contexts.

2) Contextual Graph Reasoning: With constructed contex-
tual graph G¢, graph reasoning is performed to produce
features with clarified contexts. To avoid the imbalance con-
nections, self-loop and degree normalization are first applied
on adjacency matrix E€ to get A = D_%(E + I)D™ 2, where
[ is the identity matrix, D;; = Zj E; jand D; j+; = 0. And

reasoned semantic feature. In this way, original ambiguous
features outside boundaries generated from confused contexts
can be refined with newly assigned contexts. At last, the
clarified feature X° is passed to MLP layers, and result-
ing logits YS are supervised by cross-entropy loss £, =
—ﬁ ZIN=1 CE(I?I.S, Yl.‘ygt), where Yfgt is the category annota-
tion of point i. In summary, OCM adopts a novel contextual
graph construction strategy, assigning different contexts to
points of different categories, based on which graph reasoning
is performed to produce less ambiguous representations.

C. Inner-Boundary Feature-Rectification Module

OCM can overcome the context confusion outside the pre-
dicted boundaries, however, features inside boundaries remain
ambiguous due to the lack of geometrical landmarks, leading
to inaccurate segmentation predictions. To overcome this
bottleneck, we devise IFM to differentiate confused features
inside boundaries with the delicately designed intra-sample
contrast and inter-sample boundary-aware contrast.

1) Intra-Sample Boundary-Aware Contrast: For intra-sample
contrast, our target is to make category-specific embeddings
inside boundaries similar as embeddings outside boundaries
of the same categories, and distinct from embeddings of the
different categories. In doing so, the feature ambiguity can
be effectively reduced as the confused features are optimized
towards the correct direction in the feature space.

We first project features with two subsequent MLP lay-
ers into feature embeddings E and make the contrast
in the embedding space following [34]. Then, given a
category-specific anchor embedding E; € {E,|P, € P}
belonging to inner-boundary points, we regard embeddings
in B = {EJY{" = Y& P, € N/ (P)} that belongs to
k3 nearest non-boundary neighbors with the same category as
positive embeddings, and embeddings in E; = {(E Y8 +
Yigt, P, e N, k};"”’ (P;)} that belongs to k3 nearest non-boundary
neighbors but with different categories as negative ones.
The reason that we select k3 nearest neighbors rather than
all non-boundary points is that these geometrically neigh-
boring embeddings are harder embeddings and hard posi-
tives/negatives have been demonstrated to be more beneficial
to the contrastive learning [34] compared to the easy ones.

To restrain the anchor embeddings and positive/negative
embeddings via measuring their similarities, the intra-sample
boundary-aware contrastive loss L;,;r, is formulated as:

1 1 he(E;, E;)
Li =—— —_ lo ,
intra | B| %“ |Ki+| Z gZEkeKi’ ho(E;, Ex)

EieK;
®)

where hg(-) denotes the affinity function and we adopt expo-
nential cosine similarity as: hy(p, ¢) = exp(% . %), where
T is the temperate factor. Optimized by this loss, the model
can distinguish ambiguous features inside the boundaries.
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2) Inter-Sample Boundary-Aware Contrast: As revealed by
recent studies [34], [41], a large set of effective negatives
is critical to the contrastive representation learning. While
in the intra-sample contrast, the number of effective negative
embeddings is limited by the size of the current point cloud
sample. Therefore, we propose inter-sample boundary-aware
contrast to incorporate embeddings from other samples.

To fulfill this need, we maintain an external memory bank
M e RL*XCXD during the training process, where L is the
length of training samples, C is the category number, and D
is the feature dimension. During the training, we first warm up
the network for 7' epochs to generate reasonable embeddings
and then initialize the memory bank Mr. Considering saving
all point-level embeddings requires too much memory usage,
we instead save averaged embedding for each category (the
median embedding is a viable alternative, and it can be robust
to noisy samples). Then at epochs t = T + 1, ..., for each
sample, we can compute the inter-sample contrastive loss
Linter similarly as Eq. 8, but differently replacing the posi-
tive/negative embeddings with embeddings from the memory
bank M saved in epoch 1 — 1: E;" = {E,|V§ =Y E, €
M1}, E7 = {E,|YS =Y, E, € M,_}. After computing
Linter, the memory bank is updated in a momentum way:

M, =aM! '+ (1 -a)Ei, 9)

where « is the balanced weight of previous and current embed-
dings, and E; . is the averaged embedding of the c¢ category
in the i-th training sample. In this way, the memory bank
can be updated to retain appropriate candidate embeddings for
the effective contrast with anchor embeddings, encouraging
confused anchor features to optimize towards the correct
direction in the feature space.

D. Optimization

During the training procedure, we jointly optimize the loss
in GBM, OCM, and IFM. First in GBM, cross-entropy loss
for semantics £; and boundaries L, are used to guide the
network in generating appropriate representations. Then in
OCM, to optimize the graph reasoning layers, cross-entropy
loss L. is used to supervise the refined features outside
the predicted boundaries. Finally, in IFM, intra-sample loss
Lintrq and inter-sample loss L are proposed to distin-
guish ambiguous features inside the predicted boundaries.
In summary, the overall objective function of the proposed
GRAB-Net is:

Loverall = kl(ﬁs + £b) + )“2‘CC + A3 ([fintra + Einter)v (10)

where A, Ay, and A3 are trade-off factors to balance the
contribution of each term.

V. EXPERIMENT
A. Experimental Setup

1) Datasets: To evaluate our proposed method, we conduct
experiments on two 3D segmentation datasets as follows:

IntrA is an open-access 3D intracranial aneurysm
dataset [6]. It consists of 1,909 blood vessel point

cloud segments extracted from 3D surface models of
real patients, including 1,694 healthy vessel segments and
215 aneurysm segments. Following the segmentation setup
in [6], 115 aneurysm segments with point-wise annotations
are used to evaluate the binary segmentation performance.
To obtain the boundary labels from category annotations,
we follow previous boundary-aware works [23], [24], [25] to
identify points whose eight nearest neighbors have different
categories as boundaries.

3DTeethSeg is a publicly available 3D teeth segmentation
dataset proposed in the MICCAI’22 3DTeethSeg challenge
(https://3dteethseg.grand-challenge.org/). It contains 600 lower
and 600 upper 3D surface models scanned by advanced
intraoral scanners (IOS), where each dental surface model
contains about 100,000 points. We randomly split the lower
dataset into three subsets, 450 models for training, 30 models
for validating, and 120 for testing. The tooth identification
is based on the notation system (ISO-3950). The boundary
annotations are obtained analogously to the IntrA dataset.

For both dataset, the projected node number M is set to 2°.
The number of nearest neighbors ki, ko, and k3 are set to 16,
16, 32. The temperature T and iteration weight « are set to
0.1 and 0.9. To balance three kinds of losses, A, Ay, and A3
are set as 1, 0.1, and 0.1, repectively.

2) Evaluation Metrics: The performance of our method is
assessed by four metrics, including the Jaccard Index (also
known as IoU), the Dice Similarity Coefficient (DSC), the
class-wise mean accuracy (mAcc), and the boundary IoU
(B-IoU). The former three metrics measure the similarity
between the predicted results and ground truth annotations
while B-IoU is used to evaluate the performance of the
segmentation around boundaries [25].

3) Implementation Details: Our methods are implemented
on a single RTX2080Ti GPU with the PyTorch library [42].
The baseline model is PointTransformer [18]. For the IntrA
dataset, a fixed number of 512, 1024, and 2048 points are
separately sampled from inputs as in [6]. Furthermore, on-
the-fly data augmentation is used to enlarge the training data,
including random scale of [0.8, 1.25], random rotation angle of
[—7, 7] around Z axis, random translation of [—0.1, 0.1], and
random point jitter with 0 mean and 0.01 standard deviation.
The Adam optimizer [43] is adopted with the initial learning
rate as 0.001, and the cosine annealing learning rate scheduler
is attached to gradually reduce the learning rate. We choose
a batch size of 8 and the maximum epoch number of 400,
and the warmup epoch T is set to 200. During the evaluation
process, predictions on sampled points are re-projected into
the original point cloud via three-nearest interpolation, and
computing metrics on which is more reasonable than the
sampled points since the latter will introduce randomness. For
the 3DTeethSeg dataset, we first uniformly sample 16,000
points from inputs as in [4]. Then, several online augmentation
including random scale of [0.8, 1.25], random rotation angle of
[—m, ] around Z axis, random translation of [—0.1, 0.1] are
used. The Adam optimizer [43] and cosine annealing scheduler
are also adopted with an initial learning rate of 0.002. The
batch size is set to 1 due to the memory limitation. The
maximum training epoch is 200 and the warmup epoch T
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TABLE |
COMPARISON RESULTS ON THE INTRA DATASET UNDER 512, 1024, AND 2048 SAMPLING SCHEMES

Sampled IoU%

DSC%

Methods mAcc% B-IoU%
points Vessel Aneurysm Mean Vessel Aneurysm Mean

512 93.44 77.51 85.47 96.61 87.33 92.17 91.59 27.59

PointNet++ (17”) [8] 1024 94.90 80.57 87.74 97.38 89.23 93.47 92.97 29.53
2048 94.95 81.40 88.17 97.41 89.75 93.71 93.28 30.86

512 94.22 80.21 87.22 97.02 89.02 93.17 92.64 31.54

PointConv (19°) [11] 1024 94.28 80.24 87.26 97.06 89.03 93.20 92.79 33.95
2048 94.13 81.33 87.73 96.98 89.70 93.46 93.38 34.62

512 94.25 82.13 88.19 97.04 90.19 93.72 93.45 34.86

PCT (21’) [16] 1024 94.33 82.78 88.55 97.08 90.58 93.93 94.08 36.21
2048 94.45 82.01 88.23 97.15 90.12 93.75 93.25 35.06

512 94.56 81.87 88.22 97.20 90.03 93.74 93.05 34.87

PAConv (217) [17] 1024 94.43 81.05 87.74 97.14 89.53 93.47 92.77 38.33
2048 94.18 81.69 87.94 97.00 89.92 93.58 93.00 37.79

512 95.91 83.25 89.58 97.91 90.86 94.50 94.02 38.87

PointTransformer (217) [18] 1024 95.78 84.86 90.32 97.84 91.81 94.91 94.53 43.39
2048 95.12 83.58 89.35 97.50 91.05 94.38 93.81 39.52

512 95.51 83.30 89.41 97.70 90.89 94.41 93.92 38.25

CBL (22°) [25] 1024 95.67 83.84 89.75 97.79 91.21 94.60 94.15 42.94
2048 96.14 85.49 90.81 98.03 92.18 95.18 94.86 42.58

512 96.20 86.63 91.42 98.06 92.84 95.52 95.21 44.40

Ours 1024 96.35 86.79 91.57 98.14 92.93 95.60 95.74 45.04

2048 96.64 89.19 9291 98.29 94.29 96.32 96.02 47.21

is set to 50. During the evaluation period, the interpolation
strategy is also used.

B. Results on IntrA Dataset

We first validate the effectiveness of the proposed approach
on the IntrA dataset, by comparing with state-of-the-art point-
based 3D segmentation methods [8], [11], [16], [17], [18],
[25], which are reproduced based on their official code repos-
itories. As shown in Table I, our method shows superior results
under all sampling scenarios. In particular, take 2048 sam-
pling scheme for instance, the proposed method possesses
the superior capability for 3D intracranial segmentation with
increments of 4.74%, 5.18%, 4.68%, 4.97%, 3.56%, 2.10%
in mean loU, 2.61%, 2.86%, 2.57%, 2.74%, 1.94%, 1.14% in
mean DSC, 2.74%, 2.64%, 3.67%, 3.02%, 2.21%, 1.15% in
mAcc, and 16.35%, 12.59%, 12.15%, 9.42%, 7.69%, 4.63%
in B-IoU compared with state-of-the-art methods [8], [11],
[16], [17], [18], [25], respectively. It is worth noting that
methods [8], [11], [16], [17], [18] focus on designing sophis-
ticated local feature extractors and ignore the boundary seg-
mentation, leading to inferior performance to ours. Although
the latest boundary-aware method [25] utilizes contrastive
learning to regularize features around boundaries, yielding
better results compared to previous methods, it overlooks
the global duality correspondences between semantics and
boundaries as well as the context confusion problem. On the
contrary, our proposed GRAB-Net can model duality correla-
tions globally and clarify the confused contexts, contributing
to substantial performance increases around boundary areas.
To provide intuitive demonstrations, intracranial segmentation
results of various shapes are illustrated in Fig. 5. It is evident
that our proposed method outperforms the state-of-the-art 3D
segmentation methods [8], [11], [16], [17], [18], [25] from
the qualitative perspective, especially around boundaries areas
between vessels and aneurysms.

C. Results on 3DTeethSeg Dataset

To verify the effectiveness of the proposed GRAB-Net on
3D teeth segmentation task, we evaluate the performance of
our method and existing state-of-the-art methods [8], [11],
[16], [17], [18], [25]. For a fair comparison, we implement net-
work architectures based on their official code repositories and
use the same data processing pipelines and training strategies
as our proposed method. The quantitative results of various
methods on 3DTeethSeg are listed in Table II. It is observed
that the proposed GRAB-Net achieves supreme performance
over the other point-based 3D segmentation methods [8],
[11], [16], [17], [18], [25] with increments of 9.13%, 4.56%,
1.70%, 2.11%, 1.43%, 0.53% in mean loU, 5.80%, 2.82%,
1.03%, 1.28%, 0.87%, 0.32% in mean DSC, 5.59%, 3.07%,
1.14%, 1.25%, 0.92%, 0.66% in mAcc, and 21.12%, 18.18%,
7.60%, 8.71%, 3.88%, 3.14% in B-IoU. Fig. 6 shows three
qualitative comparison results between our methods and other
models. It is obvious that the proposed method can segment
more precisely around boundary areas in red circles, showing
superior performance in visualization.

D. Ablation Analysis of Key Components

1) Effectiveness of GBM, OCM, and IFM: For an in-depth
analysis of the proposed three modules, we conduct ablation
studies under the 2048 sampling schemes on IntrA dataset.
The comparison results listed in Table. III show that our
proposed GRAB-Net (8" row) achieves superior performance
against the baseline model (1°" row) with increments of
2.68% in mean IoU and 6.26% in B-IoU, demonstrating
the good capability of segmentation around boundary areas.
We then quantify the contribution of GBM, OCM, and IFM
(2"4 — 4" row) by comparing them against the baseline model
(1%" row). Tt is observed that adding GBM, OCM, and IFM
show increments of 0.51%, 0.66%, 0.17% in mean loU and
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Fig. 5. Several typical examples of intracranial segmentation results. Each row represents the results of (a) PointNet++ [8], (b) PointConv [11],
(c) PCT [16], (d) PAConv [17] (e) PointTransformer [18], (f) CBL [25], (g) ours, and (h) ground truth. Note that the scalar in the lower right corner
represents B-loU quantity that measures the segmentation performance around boundary areas.

TABLE Il
COMPARISON RESULTS ON THE 3DTEETHSEG DATASET
Methods foU% DSC% mAcc%  B-IoU%
Incisor Canine Premolar Molar Mean Incisor Canine Premolar Molar Mean
PointNet++ (17°) [8] 66.96 74.74 75.26 7470 7291 80.21 85.54 85.88 85.52 84.33 84.70 21.68
PointConv (19°) [11] 72.83 79.53 81.04 76.50 77.48 84.28 88.60 89.53 86.69  87.31 87.22 24.62
PCT (21’) [16] 79.51 82.39 83.06 76.38  80.34 88.59 90.34 90.75 86.61  89.10 89.15 35.20
PAConv (217) [17] 78.25 80.66 83.53 7726  79.93 87.79 89.29 91.03 87.17  88.85 89.04 34.09
PointTransformer (217) [18] 83.27 86.14 87.54 83.28  80.61 90.87 92.55 93.36 90.88  89.26 89.37 38.92
CBL (22°) [25] 86.03 87.55 89.24 86.64  81.51 92.49 93.36 94.31 92.84  89.81 89.63 39.66
Ours 86.56 87.99 89.35 87.74  82.04 92.80 93.61 94.38 9347  90.13 90.29 42.80

®

Fig. 6. Two typical examples of teeth segmentation results. Each row represents the results of (a) PCT [16], (b) PAConv [17] (c) PointTransformer [18],

(d) CBL [25], (e) Ours, and (f) ground truth.

3.07%, 2.82%, 2.32% in B-IoU. These results demonstrate the
advantage of the proposed three modules, which model the
semantics-boundary correlations globally, rectify the confused
contexts outside boundaries, and distinguish ambiguous fea-
tures inside boundaries. In addition, combining any two of the
proposed modules and all modules (5" — 8 row) performs
better than using only a single module (2"¢ — 4" row), which
further verify the compatibility of the proposed modules.

2) Analysis on Projected Node Numbers in GBM: In GBM,
point-level features are projected into M nodes in the graph
domain, which encodes local coherent features to avoid redun-
dancy. To investigate the influence of the projected node
numbers, we conduct ablation experiments on IntrA dataset
under different node settings, where M equals 25,26 27 28,
and 2°, respectively. As shown in Fig. 7, it is obvious that
the performance is poor if the node number is too small, e.g.,
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TABLE IlI
ABLATION RESULTS OF GBM, OCM, AND IFM. THE BEST AND
SECOND BEST RESULTS ARE HIGHLIGHTED AND UNDERLINED

TABLE V
RESULTS OF THE PROPOSED METHOD WITH OR WITHOUT
UNCERTAINTIES IN THE GROUND TRUTH

Baseliie GBM OCM IFM ToU% B-ToU%
Vessel Aneurysm Mean
v 95.39 85.06 90.23  40.95
v v 95.32 86.15 90.74  44.02
v v 95.68 86.09 90.89  43.78
v v 9518 85.62 90.40  43.27
v v v 96.38 88.75 92.57  46.08
v v v 9623 87.45 91.84  46.82
v v v 9594 87.83 91.88  46.33
v v v v 96.64 89.19 9291 47.21
TABLE IV

EXPERIMENTAL RESULTS OF GRAPH REASONING LAYERS. BEST AND
SECOND BEST RESULTS ARE HIGHLIGHTED AND UNDERLINED

Number ToU% DSC% B-IoU%
of layers V. A. Mean V. A. Mean
1 96.47 87.75 92.11 98.20 93.48 95.89 46.23
2 96.64 89.19 9291 98.29 94.29 96.32 47.21
3 96.55 88.15 9235 98.24 93.70 96.02 45.89
4 96.57 88.41 9249 98.26 93.85 96.10 47.81
5 96.41 87.79 92.10 98.17 93.50 95.89 47.07
93.0 92,01 w0 4”&2\1
92.5 92,85 2,3 46.5 ,"”’ \\ 46 53""~—~4§.2
g 546.0 \
§ 92,0 a§45.5 \\5/
2 g / 255
; oLs 3 45.0 "J’
2 @ 44.5
91.0 44.01
065 43543p6
25 26 27 28 29 25 26 27 28 2°

Number of projected nodes Number of projected nodes

Fig. 7. Mean loU score and B-loU score under different projected node
number settings.

M = 25, mainly caused by the information lost during the
projection procedure. With the node number getting larger,
the performance tends to increase but would saturate and
even decrease when the numbers are too large, e.g, when
M is larger than 27. Too many node numbers may introduce
information redundancy, obscuring the module to explore the
hidden correlations. When M is set to 2°, the segmentation
performance achieves the best trade-off between information
reservation and clarification.

3) Analysis on the Number of Graph Reasoning Layers in
OCM: The graph reasoning in OCM can propagate desired
messages among adjacent nodes, refining ambiguous features
with specified contexts, in which the number of graph reason-
ing layers determines the exchange extent. To investigate the
influence of the number of layers /, we experiment with [ =
1,2,3,4,5, respectively. Comparison results in Table IV show
that [ = 2 performs favorably against [ = 1, 3,4, 5 settings
with improvements 0.80%, 0.56%, 0.42%, and 0.81% in mean
IoU, respectively. This result reveals that less reasoning layers,
e.g, [ = 1 can hardly propagate desired messages sufficiently,
while too many reasoning layers, e.g, / = 3,4,5 would risk
the model of over-fitting.

K ToU% DSC% B-IoU%
V. A. Mean V. A. Mean
None 96.64 89.19 9291 9829 9429 96.32 47.21
8 96.35 89.14 9275 98.14 9426 96.20 46.84
16 95.68 89.01 9235 97.79 94.19 9599 46.77
32 95.87 89.35 92,61 97.89 9438 96.13 46.87

mean iou score (%)
© © © © ©
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Fig. 8. Mean loU score of different k settings under the 2048 sampling
scheme on IntrA dataset.

4) Analysis on the Number of Nearest Neighbors k1, ko, and
ks: k1, ko, and k3 is the number of nearest neighbors used in
GBM, OCM, and IFM, and their values affect the process of
coherent node projection, contextual graph construction, and
intra-sample boundary-aware contrast, respectively. To explore
the influence of the value of k£ on the model performance,
we conduct more experiments where ki, k», and k3 are set
to 2,4, 8,16, 32, 64. Results in Fig. 8 reveal the performance
curve of ki, k2, and k3 have the same tendency. Too small k&
value would obtain a low score, while the performance of too
large k value would saturate, and the peek score is achieved
when the value of k is medium. Though the tendencies of
k1, ko, and k3 are similar, the reason behind the phenomenon
is different. For kq, small k; would lead to non-robust node
features, while large k; can cause feature overlap between
different nodes. For k;, small k» can cause sparse graph
connections and hinder the long-range propagation, while large
ky can incur redundant graph connections. For k3, small k3
can hardly provide enough hard embeddings for contrast, and
large k3 would introduce extra easy embeddings, which would
confuse the network training.

5) Analysis on the Influence of Uncertainties in the Ground
Truth: In real applications, the annotations of the collected
dataset are usually performed by multiple annotators, and
the resulting labels may have uncertainties. To investigate the
influence of uncertainties in the ground truth to the proposed
method, we design more experiments on IntrA dataset under
the 2048 sampling scheme. Considering the ground truth
of IntrA dataset is either O for vessel or 1 for aneurysm,
we generate uncertainties by sliding a local window across
point clouds. More specifically, for each point, we find its
K nearest neighbors and average the ground truth value of
these neighbors. In this way, the generated ground truth of
points nearby boundaries is close to 0.5, while points far
from the boundary are close to either O or 1. The resulting
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TABLE VI
RESULTS OF VARIOUS CONTRASTIVE STRATEGIES. BEST AND
SECOND BEST RESULTS ARE HIGHLIGHTED AND UNDERLINED

ToU%
Methods Incisor Canine Premolar Molar Mean B-loU%
baseline 84.04 86.43 87.90 83.56  80.79 39.26
w/ intra 85.93 86.74 87.25 8522 81.49 40.52
w/ inter 84.50 87.34 87.51 84.73  81.53 39.98
w/ both 85.62 87.53 88.30 85.22  82.09 41.30

soft labels can be treated as ground truth with uncertainties,
and experimental results are shown in Table. V. Compared
with using the original ground truth with soft labels, i.e.,
‘None’ in Table. V, using labels with uncertainties where K
is set to 8, 16, and 32 only cause slight performance drop of
0.16%, 0.56%, and 0.30% mloU, respectively, revealing that
our method is robust to the uncertainties existed in the ground
truth.

6) Effectiveness of the Intra- and Inter-Sample Contrast in
IFM: In IFM, we expect to utilize contrastive learning to
distinguish ambiguous features inside the boundary areas.
To demonstrate the effectiveness of the intra-sample and inter-
sample contrast, we conduct four experiments on 3DTeethSeg
dataset, which are ‘baseline’, ‘w/ intra’ and ‘w/ inter’ that only
equips the baseline with two types of contrast, respectively,
and ‘w/ both’ that adopts both contrasts. As shown in Table VI,
adding intra-sample or inter-sample contrast could bring per-
formance improvement of 0.70%, 0.74% in mean IoU, and
adopting both achieves the largest improvement of 1.50% in
mean loU. These results reveal that the two types of contrast
are both necessary for effective representation learning and
they can be well incorporated together into the baseline model.
Besides, to qualitatively verify the effectiveness of two types
of contrasts, the nonlinear dimensional reduction algorithm,
t-SNE [44], is performed to scatter the feature space of ‘base-
line’, ‘w/ intra’, ‘w/ inter’, and ‘w/ both’, as illustrated in Fig 9.
In ‘baseline’ (Fig. 9 (a)), it is obvious that features of some
categories are mixed with high overlap (regions in red circles),
which are ambiguous for the network to produce correct
predictions. On the contrary, the feature distribution of ‘w/
intra’ (Fig. 9 (b)) and ‘w/ inter’ (Fig. 9 (c)) show less overlap
compared to the ‘baseline’, demonstrating the effectiveness of
the proposed two types of contrast. Furthermore, the feature
space of adding both contrasts (Fig. 9 (d)) is well separated
with nearly no overlap, which reflects the effectiveness of the
two types of contrast from the qualitative perspective.

E. Limitation

Although the proposed method has achieved remarkable
results on medical point cloud segmentation tasks, outper-
forming previous state-of-the-art methods, it still presents
limitations to be considered. One typical example lies in the
aneurysm segmentation task, where inputs with two more
aneurysms can be hardly segmented well, as shown in Fig.10.
One possible reason is that these cases are rare, since most
inputs in IntrA dataset contain only one aneurysm each, and
thus the case that one segment with multiple aneurysms is
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Fig. 9. lllustration of the normalized feature space of (a) baseline,
(b) w/ intra-sample contrast, (c) w/ inter-sample contrast, and (d) w/ both.
Note that different colors represent different categories, and red circles
highlight regions that are not separated well.

Ground truth

Prediction

Prediction Ground truth

Fig. 10. llustration of failure cases on IntrA dataset.

seldom seen by the network during the training process. In the
future, we would like to explore more effective methods to
handle datasets with imbalanced data type distribution.

V. CONCLUSION

Point cloud segmentation is crucial in many medical appli-
cations, and it is challenging to segment well around the
boundaries due to the insufficient duality constraints and
context confusion. In this paper, we propose a GRAB-Net
framework with GBM, OCM, and IFM to tackle the aforemen-
tioned issues. GBM proposes to build global relations between
semantics and boundaries in the graph domain, providing
sufficient duality information for producing features of high
quality. The proposed OCM leverages the contextual graph to
assign appropriate contexts outside boundaries. Furthermore,
IFM is designed to reduce the feature ambiguity inside bound-
aries with intra- and inter-sample contrast. Extensive exper-
iments on two benchmark datasets, IntrA and 3DTeethSeg,
verify the superiority of the proposed method. In addition, the
comprehensive experiments demonstrate the effectiveness of
each proposed component.
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