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HR-Net: A Landmark Based High Realistic Face
Reenactment Network

Qiuyu Ren , Zhiying Lu , Haopeng Wu , Jianfeng Zhang , and Zijian Dong

Abstract— In the past, GAN-based face reenactment methods
concentrated mostly on transferring the facial expressions and
positions of the source. However, the generated results were
susceptible to blurring in some minute details of the face, such as
teeth and hair, and their backgrounds were also not guaranteed
to be consistent with the manipulated images in terms of light and
shadow. Because of these issues, the generated results could be
distinguishable as fakes. In this paper, we proposed a landmark
based method named HR-Net, which can render source facial
expressions and postures on any identity and simultaneously
generate realistic face details. Firstly, a lightweight landmark
identity conversion module (LIC) was designed to address the
identity leakage problem, and it represented facial expressions
and poses with only 68 2D landmarks. On this basis, a boundary-
guided face reenactment module (BFR) was presented to only
learn the background of the reference images; thus, the results
generated by BFR can be consistent with the reference images’
light and shadow. Moreover, a novel local perceptual loss function
was implemented to support the BFR module in generating more
realistic details. Extensive experiments demonstrated that our
method achieved the state of the art.

Index Terms— Face reenactment, landmark based, image
synthesis.

I. INTRODUCTION

FACE reenactment is the task of transferring the pose
and expression of one face to another to generate the

same stance and emotion. This technology can be extremely
beneficial to various industries such as film, virtual reality,
teleconferencing, and more. Over the past few decades, numer-
ous research methodologies for face reenactment have been
developed. In earlier times, facial manipulation was achieved
by leveraging computer graphics. chien, etc [1] uses the optical
flow to describe facial action and perform facial animation.
The dense optical flow model is capable of mapping both
the source and reference structures. However, the computer
graphics technology is costly to employ because it requires
complex and customized face models.
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Deep learning methods represented by feature extraction
networks reduce the high price of CG methods. Monkey-net
[2] proposed a motion field to represent the action in the
drive frame and extract this motion field using the U-Net
architecture. Subsequently, FOMM [3] performs a first-order
Taylor expansion of the motion field, considering the motion to
be related to the detection point and its local. Then the motion
fields play a role in wrapping reference frames to obtain the
animated targets. The emergence of GAN [4] networks in
deep learning has greatly improved the quality of processed
images, and a number of face reenactment methods depending
on generative models have been proposed. Early GAN-based
methods mostly work on the RGB space of images to learn the
actions of source faces and the identities of reference faces.
References [5], [6], and [7], all of which supply images or
video frames directly into generative models for reenactment.
Xu et al. [5] leverage CycleGAN [8] to generate the target
character’s face image by treating the source and reference
images directly as network input. Since the action and identity
are not decoupled in their method, the identity of the target
generated in this way tends to be an average of the source and
reference. This flaw we call “identity leakage.”

Later, some people [9], [10] started to combine the latent
space with GAN networks to manipulate expressions and
identities in the latent space. Liu et al. [11] argues depict-
ing face appearance and action in the latent space allows
complete decoupling and controlling both of them sepa-
rately. Tripathy et al. [12], [13], [14] introduce AU(Action
Unit) space to correspond to facial muscle and angles of
source images, which decouples the gestures from the source
identities. Other researchers [15], [16], [17], [18] establish
three-dimensional facial latent representations to tackle the
identity leakage problem based on 3DMM (3D Morphable
Model), which can reconstruct the expressions on the face.
According to these methodologies, the reenacted heads are
allowed for larger and more free posture changes. The superior
results of these methods come at the cost of the complex
overhead of 3DMM. Additionally, [16], [17] do not address
transferring the pose orientation of the source face to the target
face.

Due to the widespread availability of open-source landmark
detection tools, many GAN-based face reenactment methods
utilize landmarks’ latent space to extract expressions and head
poses from the source image. Methods [19], [20], [21] have
successfully represented human head action features using
landmarks and used GAN networks to generate face images

1051-8215 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 21,2024 at 12:36:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7136-7713
https://orcid.org/0000-0003-3445-8637
https://orcid.org/0000-0001-8401-0203
https://orcid.org/0000-0001-8486-4727
https://orcid.org/0000-0002-8509-0118


6348 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 11, NOVEMBER 2023

Fig. 1. The top horizontal row of the images are the source face images,
and the leftmost column are the reference face images. Our method is able to
render any expressions and postures of the source face on the reference face
realistically, no matter the original expressions and postures of the sources.

of desired identities from corresponding landmark images.
However, landmarks are not fully decoupled from the face
identity [16], [17], leading to identity leakage if used directly
for generating target faces with different identities. Addition-
ally, because of the sparsity of landmarks, the landmark-based
approach generates face images that are challenging to main-
tain both the local detail of the face and the background of
the image.

In conclusion, most current GAN-based reenactment meth-
ods use latent representations for better visualization of the
target faces, but they struggle to transfer the pose of the source
face to the target face, and some of them can be complex
and challenging to train. Furthermore, the current approach
of using landmarks primarily addresses the identity leakage
problem but ignores detailed rendering, resulting in generated
images with inferior local detail. For example, the face appears
blurred with hair and gaps in the teeth, or the background
appears distorted. This can lead to decreased audience interest
in the generated images [22], as per the Valley of Terror
theory [23], [24].

To address the issues mentioned above, we propose a
novel landmark based face reenactment method for freely
transferring the pose and expression of a source face to a target
face with reference identity. Firstly, we pass the landmarks
extracted from the source faces through a lightweight landmark
converter to remove their source identities, and introduce
a landmark loss function to accelerate successful module
training. Secondly, to address the issue of sparse spatial
landmarks, we implement a data augmentation measure for
modified landmarks to obtain target boundary images. We then
introduce a boundary-guided face generator that uses boundary
and reference images in an adversarial generative manner to
obtain realistic reenacted images. Finally, with the purpose
of addressing the lack of generated details in the complex
structure, we propose a novel local perceptual loss function
to optimize the local facial detail quality in the generated
images. Fig. 1 shows that our approach can effectively generate

realistic, detailed architecture while reenacting arbitrary facial
expressions and poses.

In summary, the main contributions of HR-Net are as
follows:

• We implement a light landmark identity conversion (LIC)
module, which can keep both the expression and pose
of the source face. It addresses the problem of “identity
leakage”, where different identities are reenacted to each
other.

• The newly introduced boundary-guided face reenactment
(BFR) module combines boundary images and reference
images at multiple scales to generate target images. Thus
the target image has the same light and shadow as the
reference image and is consistent with the boundary
image gestures.

• The modified landmark loss function is adapted to raise
the performance of the landmark identity conversion
(LIC) module. And also, we propose a novel local
perceptual loss that helps the method to generate face
images with excellent background and foreground details
maintained directly without segmenting the images.

• Extensive experiments on experimental datasets and field
datasets demonstrate HR-Net reaches the state-of-the-art
in recent years and preserves the light and shadow of the
reference images nicely.

II. RELATED WORK

A. Landmarks Based Reenactment

The majority of the methods [10], [19], [20], [25], [26], [27]
use 2D landmarks for representation, while the rest [21], [28]
use 3D landmarks. ReenactGAN [29] was the first generative
reenactment method for extracting human facial expressions
based on landmarks. However, its target-specific decoder com-
ponent limits its ability to retrain a specific boundary-to-
image decoder each time a new reference face is selected.
Ha et al. [28] noticed that the residual identity from source
landmarks would still lead to identity leakage issues, especially
when performing between different identities. To combat iden-
tity leakage, Sungjoo’s work relies on a vast amount of prior
knowledge, which is built on its few-shot learning. While [28]
can accurately mimic the mouth movements of the characters
using predicted landmarks, it cannot replicate large gestures
in action.

FReeNet [19] is a method that transfers expressions rep-
resented in landmark latent space from source faces to dif-
ferent identities, and it proposes a landmark converter to
overcome the identity leakage problem. However, the method
cannot render the source head direction on the target face.
Li-Net [20] achieves pose transfer by adding a face image
rotation module. However, the landmark converter in Li-Net
fails to preserve the poses of source images, and the additional
rotation module needs to be trained separately, thus increasing
the complexity of the method. DualGAN [21] induces a recog-
nition pre-training network in the landmark converter, which
removes the softmax layer and uses the output features of the
last layer as the identification characteristics of the reference
face. It employs a discriminator and a classifier to assist
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the converter in stripping source identities while retaining
both expressions and poses of source images. Huang et al.
[10] does not output the modified target landmark via the
decoder. Instead, the method encodes the source landmark
and the reference landmark separately into latent codes and
then utilizes them as two inputs for the subsequent module.
Fu et al. [30] obtain a pose vector by computing the source
landmark and an expression vector by computing the source
AU. Using two independent representations, they describe all
the motions of the source face and ultimately reproduce the
entire source face.

Our work is closely related to the methods proposed in [19]
and [25]. Furthermore, our method can manipulate the direc-
tion of the target head to be in line with the source, which is
advanced.

B. Image Synthesis
The emergence of Generative Adversarial Networks

(GAN) [4] has provided a new approach for image synthesis.
However, the original GAN network was difficult to train and
caused pattern collapse. This issue was addressed by Wasser-
stein GAN (wGAN) [31], which used the Wasserstein distance
to calculate the distance between the generated data distribu-
tion and the real data distribution. To enhance the controllabil-
ity of generated images, conditional GAN (cGAN) [32] was
proposed, which added conditional restrictions in addition to
noisy vectors.

StyleGAN [33], [34] proposed a style-based generator that
can decouple the code controlling the image attributes in an
intermediate latent space. This method demonstrated that the
code can determine the different styles of the generated results.
Inspired by cGAN and StyleGAN, the face reenactment topic
can also be considered as a conditional generation problem.
Our idea to solve this task is to decouple the expression and
pose features to control them.

In [35], the conditional GAN’s generator was applied
to image translation. Different styles of faces were treated
as different domains, and conditional GAN was used to
transform the faces into different domains to achieve good
performance. In image translation, a series of methods [8],
[36], [37], [38], [39], [40] perform superior. For example,
Pix2Pix [36] achieves impressive results in paired image
datasets by using L1 and adversarial losses. Wang et al. [37]
create high-resolution images by employing a progressive
training method with the same utilization of paired datasets.
CycleGAN [8] achieves translation between different styles of
images without paired images by using two mirror generators
and the proposed consistency loss.

StarGAN-1 [39], which has a loop shared generative net-
work structure, can transform different domains with just one
generator by giving different labels. StarGAN-2 [40] designs
a style extractor instead of labels like those employed in
StarGAN-1. The extractor in StarGAN-2 can learn the style of
a domain of images and then generate images with the same
style. In our study, we separate RGB images and boundary
images into two distinct style domains, considering the RGB
image format and the boundary image format of the same
action face as two different styles.

III. PROPOSED FRAMEWORK

This section introduces the modules of HR-Net and the
loss functions of each module. The overall framework and the
full reenactment’s progression are shown in Fig. 2. As shown
in Fig. 2, the model consists of two modules, the landmark
identity conversion(LIC) module and the boundary-guided face
reenactment(BFR) module. These two modules are trained
sequentially. For the sake of convenience, we note the
source image, which provides expression and pose, as Is
(∈ R3×256×256), and we note the reference image, which
provides identity information, as Ir (∈ R3×256×256). First,
using the current state-of-the-art open source face detection
toolkit [41] FNet, we extract from Is and Ir to obtain
their landmarks, which are denoted as ls (∈ R2×68) and
lr (∈ R2×68) respectively. The majority of facial identity con-
tent on Is is eliminated because of FNet processing, and the
desired expression and pose from Is is embedded in landmark
latent space. To address identity leakage in the LIC module,
the ls and lr are input to a landmark generator GL , then the
GL outputs the modified target landmarks l̂t (∈ R2×68) with lr
identity and ls gesture. Second, l̂t is subsequently processed to
the target boundary image b̂t (∈ R3×256×256), with the goal of
allowing b̂t to carry more of the same identity as the Ir than Is .
The obtained b̂t is stored as RGB image format like Ir . In the
BFR module, b̂t and Ir are sent to a novel boundary-guided
face generator G F in image format, so the G F could extract
the action features of b̂t and the style features of Ir . After that,
the two different features are multi-scale fusion by adaptive
instance normalization (AdIN). The fused feature map is then
passed through an image activation layer, yielding the target
image Ît (∈ R3×256×256) with Is expression and pose and Ir
identity. Moreover, in order to solve the problem of detailed
textures such as teeth and hair sticking in the generated images,
an improved local perceptual loss is proposed to optimize this
existing problem.

A. Landmark Identity Conversion Module

Despite the fact that ls has removed most of the identity
content of Is in landmark latent space, the coordinate distri-
bution of ls still reflects the source’s facial geometry, such
as the contour of the face or the bridge of the nose, which
can reflect the identity of the source. In other words, the
source’s action and identity are not fully decoupled. If we
can not obtain independent Gaussian distributions of action
features in the landmark latent space, the entangled action and
identity features can lead to a low upper bound on final model
performance. That is, some generated Ît may not achieve the
desired results. Since it is impossible for landmark coordinates
to carry no identity information at all, one effective strategy to
accomplish this objective is to devise a converter that enables
Ît to preserve the same actions as the source, while also
adopting the geometric identity of the landmark lr . Depending
on this, the problem of “identity leakage” would be addressed.

The LIC module is depicted in the upper portion of Fig. 2.
The module contains a landmark generator GL and a discrimi-
nator DL , and it uses generative adversarial training to enhance
the quality of the target l̂t . Inspired by the design of mapping
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Fig. 2. Overview of the whole framework. The two modules of the framework, LIC and BFR, respectively, contain a landmark generator GL and a face
generator G F . A face detector FNet would acquire both the source and reference landmarks, and then both landmarks would be sent to GL to decouple the
remaining source’s identity on the target landmarks l̂t . After that, the target boundary image b̂t , which is generated from l̂t , is then joined with the reference
image by G F to produce the target image Ît .

network decoupling in styleGAN [34], GL consists of two
encoders(φ1, φ2) and one decoder(ψ1). φ1 and φ2 have the
same structure, consisting of five fully-connected layers, each
layer followed by a relu-leaky activation layer. The structure
of ψ1 is a mirror of the encoder. φ1 is considered as an action
encoder that decouples ls into a one-dimensional action vector,
and φ2 is considered as an identity encoder that decouples
lr into a one-dimensional identity vector. Subsequently, the
action vector and the identity vector are concatenated and
decoded by ψ1 to yield the target landmark l̂t . The structure
of DL is the same as that of ψ1; the only difference is that
ψ1 outputs the landmark l̂t , while the former outputs a number
between [0,1] for determining whether l̂t is real or fake.

In order to obtain the optimal GL , the loss function is
designed as follows:

1) L1 Reconstruction Loss: We expect the closer the
distance between the generated l̂t and the ground truth
lt , the better. In actuality, we flatten the coordinate val-
ues of 68 landmarks into a vector before feeding them
into the φ1 and φ2. Compared to the L1 loss, L2 will
be more sensitive to anomalous coordinate values. So we
select L1 reconstruction loss for improved robustness, as in
equation (1).

L1 = ∥l̂t − lt∥1 (1)

2) Adversarial Loss: Inspired by Zhang’s et al. [19]
approach to training, we introduce a discriminator DL , treat
GL as a generator, and get the target output l̂t after feeding ls
and lr to GL . Following that, l̂t is fed to DL to determine if
its distribution is reasonable. the role of DL is to facilitate GL
to generate l̂t that conforms to the true landmark distribution

space.

Ladv
DL

= Elt ∼Pdata(lt )[log(DL(lt ))]

+ El̂t ∼Pdata(l̂t )
[1 − log(DL(l̂t ))] (2)

where lt is considered as the true target landmark estimate and
l̂t can be denoted as l̂t = ψ1(φ1(ls), φ2(lr )).

3) Identity Consistency Loss: Because the identities of ls
and lr can be arbitrary, when the identities of ls and lr are the
same, there is a possibility that GL only gets l̂t from ls through
ψ1, causing ls and l̂t to form a single shot. In order to prevent
GL learning without φ2 participation, identity consistency loss
(L idt ) is introduced. In particular, the L idt is to ensure that
GL learns the action code only from ψ1 and the identity code
only from ψ2.

L idt = ∥lt − ψ1(φ1(lr ), φ2(lr ))∥1 (3)

4) Triplet Loss: Landmarks with different identities but the
same expression and posture are distributed close together in
Euclidean space, while two landmarks with the same identity
but different expressions and postures have a certain gap
in their Euclidean distance [42]. The little distance between
different identity classes and the high distance within the same
identity class will lead to the difficulty of training GL , and the
generated results prone to pattern collapse.

With the addition of triple loss, as illustrated in Fig. 3, the
objective loss function will penalize the distance between l̂t
and ls in high-dimensional space while reducing the intra-class
distance between l̂t and lt . With triple loss, l̂t can better remove
the identity information from ls and carry only the identity on
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Fig. 3. The effect of triple loss is to enlarge the inter-class distance and
shrink the intra-class distance.

Fig. 4. The structure of the face generator G F .

lr , which helps the module solve the identity leakage problem.

L tr i = max(dis(l̂t , lt )− dis(l̂t , ls)+ margin, 0) (4)

where margin is a constant that shrinks the distance between
lt and l̂t and expands the distance between lt and ls .

Overall, the total loss function is expressed as:

L L I C = λ1Ladv
DL

+ λ2L1 + λ3L idt + λ4L tr i (5)

where λi (i = 1, 2, 3, 4) denotes the weight of the components
of the loss function.

B. Boundary-Guided Face Reenactment Module

The face generator G F uses StarGAN-2 as the backbone.
As shown in Fig. 4, it consists of a boundary-to-face trans-
former T f and a style extractor Es . T f is an hourglass-type
network structure, with the downsampling block consisting
of a convolutional layer and four decreasing-size residual
blocks; the middle block consisting of four identical residual
blocks; and the final upsampling block consisting of four
increasing-size residual blocks followed by a deconvolutional
layer. We add a tanh activation layer after the deconvolution
layer as the image activation layer. The tanh layer constrains
the output matrix threshold between [−1, 1], which is very
useful to prevent the G F training gradient explosion and the
color distortion of the output images. The network structure
of the style extractor Es is, in order, a convolutional layer, six
residual blocks like the middle block of T f , a convolutional

layer, and finally a fully connected layer. The Es style code
output is then concatenated with the output features of each
layer of T f middle and up-sampling blocks. After that, the
concatenated features will pass through an AdIN layer like
Fig. 4 and flow to the next block.

Once we get the target landmarks, as mentioned above, the
landmark coordinates are at a high distance within the identity
intra-class and at a little distance inter-class. The solution is
to extend the inter-class distance by increasing the identity
information carried by l̂t . We divide the 68 landmark points
of l̂t into 13 parts (face contour, eyebrows, nose, mouth,
etc.) according to semantics, and then connect the points of
each part with a line. Wu et al. [29] argue that lines with
distinct boundaries are not the real boundaries of a human
face. Therefore, we apply Gaussian blur to each boundary line.

The b̂t obtained from l̂t , is sent to G F as a three-channel
image together with Ir . T f extracts multi-scale action features
from b̂t image, Es extracts texture features that are the identity
information of the reference face at all levels on Ir . The texture
features are injected into the layers of the middle blocks and
up-sampling blocks of T f by adaptive instance normalization.
Huang and Belongie [43] considers that the style of an image
is determined by the mean and variance of the statistics of
its feature map. Therefore, through removing the mean and
variance of b̂t feature map and injecting the statistics of Ir
by multi-scale, the target face Ît generated by G F has the
identity of Ir face in all levels. That is to say, Ir provides
multi-scale texture information for Ît , which makes the identity
information of Ît and Ir consistent. As for the discriminator,
a 70 × 70 patchGAN [36] is used to penalize G F . To ensure
that Ît and Is expressions and poses are as indistinguishable
as possible, inspired by condition GAN [32], b̂t is viewed as a
condition and concatenated with output Ît , then both of them
are forwarded into the patchGAN. The results demonstrate the
training paradigm of conditional GAN works well for head
reenactment in a large pose.

The loss function of the face generation module consists of
the following three components:

1) Conditional Adversarial Loss: Unlike typical general
adversarial loss, G F applies the conditional adversarial loss
with the equation (6). We concatenate the generated image
It and the boundary image b̂t before feeding them into the
patchGAN.

L DB = E It ∼Pdata(It )[log(DB(It , bt ))]

+ E Ît ∼Pdata( Ît )
[log(DB(G f (bt ), bt ))] (6)

2) L1 Loss: We apply the L1 paradigm of the difference
between the output Ît and the true value It like equation (7).
Comparing with the L2 paradigm of both, L1 encourages less
blurring [36].

L1 = ∥ Ît − It∥1 (7)

3) Local Perceptual Loss: L1 loss can reconstruct the color
and luminous intensity of the global components of an image
with good quality. However, it may not perform well in
preserving complex details such as tooth gaps and hair lines
on a face. This is because L1 loss tends to generate images
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Fig. 5. Different Conv blocks of VGG-16.

with excellent global light and shadow quality while ignoring
local details during the BFR module. The L1 distance is less
concerned with outliers compared to the L2 distance, and
thus, the high-frequency local components of the image are
often ignored. To overcome this limitation, we propose a local
perceptual loss.

Since the convolutional layer can only process information
from adjacent pixels [44], [45], we introduce a pre-trained
VGG-16 network and intercept its first few layers as a
low-dimensional feature extractor. A completed VGG-16 con-
sists of 13 convolutional layers followed by 3 fully connected
layers, for a total of 16 layers. However, the image does not
scale down after operating with each layer of convolution.
We remove the last three fully connected layers and use the
activation layer in the VGG-16 as a cutoff. As illustrated in
Fig. 5, the 13-layer convolution can be divided into 5 blocks,
denoted as Relu1-2, Relu2-2, Relu3-3, Relu4-3, and Relu5-3
(abbreviated asR1,R2,R3,R4,R5), respectively. If an image
is input into the first layer of VGG-16, then the feature map
output from the five cutoffs can be represented in order:

fi = R⟩(R⟩−∞(· · ·R∞(It ) · · · )) (8)

f̂i = R⟩(R⟩−∞(· · ·R∞( Ît ) · · · )) (9)

As in Fig. 5, fi , f̂i are represented as the feature maps of the
output of the Ri block.

To focus on the high-frequency component, we calculate the
L2 distance between the obtained feature maps. Each point on
the feature map represents a local part of the image, and the
relu3-3 block of the VGG net is finally selected as the output
layer. The ablation experiments for the selection of the block
of VGG net are illustrated in Section IV. The local perceptual
loss is formulated as follows:

Llocal
per =

1
k

k∑
i=0

∥ fi − f̂i∥
k
2 (10)

Here k represents the feature map size.
Overall, the total loss function is expressed as:

L B F R = α1Ladv
DF

+ α2L1 + α3Llocal
per (11)

where αi (i = 1, 2, 3) denotes the weight of the components
of the whole loss function.

IV. EXPERIMENT

In this section, we first introduce the datasets and the imple-
mentation setting details elaborated in Section III. Metrics
and comparative results with state-of-the-art methods will then
be shown. Moreover, we also list the comparative results of
various ablation experiments on HR-Net.

A. Datasets and Implementation Details

1) Implementation Detail: The LFG module is trained from
scratch with the objective defined in equation (5) and the
weights in it are settled as λ1 = 1, λ2 = 100, λ3 = 1, and
λ4 = 10. Furthermore, the margin for triple loss in equation (4)
is set to 1. The BFR module is trained from scratch with the
objective defined in equation (11), and the weights in it are
settled as α1 = 1, α2 = 10 and α3 = 1. Both modules of
the HR-Net use Adam as the optimizer. The Adam optimizer
parameters for GL and DL are jointly set to β1 = 0.99,
β2 = 0.999; for G F and DF , the Adam optimizer parameters
are jointly set to β1 = 0.5 and β2 = 0.999. The LIC module
is trained first and would be selected as a well-performing
landmark generator GL for the training of the other one.
We train the LIC module for 2000 epochs with batch sizes
of 128; the initial learning rate is 0.0002 and decays by forty
percent every 600 epochs. The BFR module is trained for
300 epochs with batch sizes of 16 and an initial learning rate
of 0.0002. The latter’s learning rate remains constant at its
initial value for the first 150 epochs and then decreases linearly
to zero. All experiments are run on Ubuntu 18.04 with an
NVIDIA RTX 3090 GPU.

2) RaFD: Dataset contains a total of 8,040 images from
67 identities, each identity with 8 expressions and 5 angles
[46]. The identities with the same angle and expression contain
three different gazes. We follow the same settings as in the
FReeNet [19]. Namely, we use the 45◦, 90◦, and 135◦ angles
of the dataset and crop the images. We align and resize the
images to 256*256. To test the performance, 100 images are
selected as source images for each identity to reenact, resulting
in 6,700 generated images.

3) VoxCeleb-1: Dataset is a contains 1,251 celebrity video
URLs collected from YouTube [47]. The dataset has been
divided into a training set and a test set, and we follow
the experimental protocol reported in the Few-shot [48]. One
image per frame is taken from each video, and all images are
cropped and scaled to 256 × 256. Moreover, all images are
face-aligned. For the testing performance phase, 50 celebrities
are randomly selected from the test set. Each of the test set’s
32 hold-out frames has no overlap with the training images.

B. Compared to SOTA

1) Method: In this study, we comprehensively evaluated
our proposed method by comparing it against five state-of-
the-art methods on both the RaFD [46] and VoxCeleb-1 [47]
datasets. The methods we compared our approach against
were FReeNet [19], DualGAN [21], FOMM [3], Pix2Pix-HD
[37], and X2Face [49] for the RaFD dataset, and Few-Shot
[48], FIPLS [50], FOMM, Pix2Pix-HD, and X2Face for the
VoxCeleb-1 dataset.
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Fig. 6. Qualitative results on RaFD. The top row of two faces are reference images, and the leftmost column of six faces are source images.

FReeNet and X2Face fine-tuned their pre-trained networks
on both datasets, and we evaluated their performance there-
after. Additionally, we also tested X2Face on both datasets
using the original pre-trained network provided by the authors.

To the best of our knowledge, DualGAN, FewShot, and
FIPLS do not have code available for reproducible execution,
so we only copy the results and illustrations of their articles.
We also trained Pix2Pix-HD using the same hyperparame-
ters as reported by the original authors. To ensure a fair
comparison, we used landmark-enhanced boundary maps as
three-channel images stacked with the reference faces as
six-channel tensors for training.

2) Metrics: In order to evaluate the quality of the generated
images, we introduce FID [51], the specific method is to
extract the features of the generated images using the trained
Inception-V3 network and calculate the distance between the
generated images and the real images in the feature space.
SSIM [52](Structural Similarity) is introduced to compare the
different structures between truth and target images at a low-
level, especially the variance of the face details. We also make
use of a state-of-the-art face recognition network [53] to get
the identity features of a generation and calculate the CSIM
(Cosine Similarity) with its ground truth. The objective of
CSIM is to evaluate the identity match of the reenacted images.

3) Compared Result: Table I and Fig. 6 present the qual-
itative and quantitative results of our method compared to
state-of-the-art approaches on the RaFD dataset. As shown
in Fig. 6, FReeNet method can transfer the expression of
the source face to the reference face; however, it cannot
change the pose direction of the reference face. When the

TABLE I
QUANTITATIVE RESULTS ON THE RaFD

reference face pose direction is frontal, FOMM is also capable
of generating clearer faces, but the resulting expressions are
not perfectly reproduced. Conversely, when the reference face
pose direction is sideways, FOMM fails to generate faces. The
results of DualGAN in Fig. 6 demonstrate that it can achieve
the transfer of the source face pose. However, it does not
sufficiently address the issue of identity leakage. For example,
the generated face contour in the second row is visibly too
large and resembles more the male identity of the source.

Regarding Pix2Pix-HD, a GAN-based method, as shown in
Fig. 6, the pixels at the edges of the face generated by this
method are always blurred or even drifted to the background.
This phenomenon can be easily discerned by human eyes or
machine algorithms as a m̂odified fakeîmage. Additionally,
as seen in Table I, the metrics of X2Face on the RaFD dataset
are significantly higher than all other methods, including our
own. From Fig. 6, we can find that when the reference image
is a side face, the generated result of X2Face is difficult to
identify the human shape; when the reference image is a front
face, the generated face is also greatly distorted. The possible
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Fig. 7. Qualitative results on VoxCeleb-1. The first column Ref is the manipulated face, and the second column Truth is the desired expression and pose of
the manipulated face.

reason for this issue could be that the space learned by the
X2Face pre-trained network does not match the distribution
of the RaFD dataset.

Compared to the above methods, our method can transfer
the expression and pose of the leftmost column source face
quite well, no matter the gestures of the reference faces.
Furthermore, the image results in Fig. 6 illustrate HR-Net
addresses the identity leakage problem more perfectly com-
pared to DualGAN. For the quantitative analysis, HR-Net
achieves a FID of 4.633 on the RaFD dataset, which exceeds
all three states of the arts. Typically, the FID only indicates
that the generations are more like the “real” images and does
not reflect whether the generated results have identity leakage
problems. That’s why the FID of DualGAN is only 4.79, which
is close to our FID value, but the face contours of the same
identities generated by different sources are not the same.
It is noticeable that our method pays attention to both the L1
parametric and local L2 parametric constraints. That is, both
the SSIM metric and the CSIM metric of our method shown in
Table I are significantly higher than any other. As presented in
Table I, the SSIM result of our method is able to reach 0.882,
and the CSIM reaches an amazing 0.906.

The qualitative and quantitative results of our method
are compared to state-of-the-art methods, including Few-
shot, on the VoxCeleb-1 dataset, as shown in Fig. 7 and
Table II. We note that Few-shot is a few-shot learning model
and chose their one-shot inference results as a comparison.
Our method achieves outstanding results on the VoxCeleb-1
dataset. As illustrated in Fig. 7, our method can reconstruct
the microphone in the background, which is a clear advantage
and contribution of our BRF module, enabling the learning
of all foreground-background information from the reference
image simultaneously. In contrast, none of the other compared
methods, including Pix2Pix-HD, can generate the microphone
in the second row of images. Pix2Pix-HD generates a good
foreground of the face but does not learn the color information
of the reference background, leading to significant weakening

TABLE II
QUANTITATIVE RESULTS ON THE VOXCELEB-1

of the image metrics. Our method also preserves the back-
ground shape of the reference image well compared to the
wrapped methods, including FOMM and X2Face.

Table II demonstrates that our method achieves the best
results for each metric on the VoxCeleb-1 dataset. However,
the background complexity of the VoxCeleb-1 dataset is higher
than that of the laboratory dataset RaFD, which explains why
all metrics of our method in Table II are inferior to Table I.

To summarize, our method achieves state-of-the-art perfor-
mance on the VoxCeleb-1 dataset, as demonstrated by both
qualitative and quantitative results. The BRF module is a
clear advantage, enabling our method to learn all foreground-
background.

C. Ablation Experiments
The experimental setup for our study includes several com-

ponents. Firstly, we conduct an ablation study on the L I C
module to determine its impact on the overall performance
of our proposed HR-Net model. Secondly, We also explore
the impact of different components of the L L I C loss function
on various aspects of the HR-Net model. Thirdly, we investi-
gate the need for landmark enhancement measures to further
improve the quality of generation. Finally, we discuss the
optimal VGG-16 perceptual block for our model. In addition
to the three metrics presented in the preceding section, we also
employ PSNR [54] and LPIPS [55] for quantitative analysis,
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Fig. 8. Qualitative results for the LIC module in the VoxCeleb-1 ablation
experiment. The first column of the figure shows the reference face, and the
second column shows the source face providing expressions and gestures.
The last two columns demonstrate the role of the LIC module in addressing
the “identity leakage” problem during cross-reenactment.

TABLE III
QUANTITATIVE RESULTS OF ABLATION EXPERIMENTS ON LIC MODULES

with PSNR being an essential metric in the field of image
hyper-segmentation, and LPIPS assessing the similarity of two
images in a manner more congruent with human perception.

1) Ablation on LIC Module: Our experiments demonstrate
the significance of the L I C module, as evidenced by both
qualitative and quantitative analysis on the VoxCeleb-1 dataset.
Fig. 8 highlights the impact of the L I C module on the gener-
ated images, where the contours of the face bear traces of the
source face when the module is not involved. When the source
image in the first line drives the reference front face with an
open-mouthed male into a side face, the generated male face
without the L I C module shows a smaller contour and bears
female identity features of the source picture. In contrast,
the generated face with the L I C module does not exhibit an
unnatural contour, indicating that the involvement of the L I C
module successfully addresses the identity leakage problem.

Furthermore, our findings demonstrate that the L I C module
improves the performance of all five metrics of the generated
images, as shown in Table III. By resolving the identity
leakage problem, the generated faces are more consistent with
the true values, resulting in improved metric scores for the
pixel level and feature semantic level of the images.

2) Ablation on L L I C : We conducted validation of each
component of the L L I C loss function on the RaFD dataset
and evaluated their impact on the training process and final

Fig. 9. Loss the effect of different components on the quality of face
generation in the generation phase. baseline (BL) is set to L1 only, from
left to right representing the Loss function adding the last component in turn.

TABLE IV
THE RESULTS OF THE METRICS OF EACH COMPONENT OF L L I C ARE

ADDED IN TURN. BASELINE (BL) REFERS TO THE MODEL WITH
L1 LOSS ONLY. ACE REPRESENTS THE AVERAGE COORDINATE

ERROR OF THE LANDMARKS AND THE OTHER METRICS
INDICATE THE QUALITY OF THE GENERATED FACES

quality of the generated faces, as presented in Table IV and
Fig. 9. In addition to the five metrics that measure the image
quality, we introduced the Average Coordinate Error (ACE)
to determine the difference between the modified l̂t and the
ground truth lt . We computed ACE by generating 1000 random
l̂t , calculating them with the corresponding lt , and averaging
the results.

We used L1 loss as the baseline for LossL I C and then added
Ladv , L idt , and L tr i in turn. The notation +L∗ in Fig. 9 and
Table IV indicates that the corresponding loss was added to
the target loss, and the notation +L tr i indicates that the loss
at this point is consistent with equation (5).

Table IV shows that the baseline has the highest ACE,
indicating that l̂ t still contains some of the source contour
information. Moreover, the LIC module obtained from the
baseline loss training has the worst performance according
to the five quantitative metrics in the final face generation
test phase. As Ladv, L idt , and other losses are introduced
during training, the relative ACE starts to decrease. Notably,
the introduction of L tr i results in a significant decrease in the
ACE of l̂ t to 1.742. While it may be difficult for the human
eye to perceive the improvement in image quality resulting
from the addition of LossL I C components, Table IV shows
that the addition of these components is indeed beneficial.

3) Ablation on Landmark Enhance: To highlight the supe-
rior performance of boundary images over landmark images,
we use both landmark and boundary images as inputs to
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Fig. 10. Landmark-based and boundary-based reconstructed images. The first and third rows are the target landmarks and target boundaries after the LIC
module, and the second and fourth rows are the respective reconstructed generated images.

TABLE V
QUANTITATIVE RESULTS BASED ON LANDMARKS AND BOUNDARIES

G F , and present the qualitative and quantitative results in
Fig. 10 and Table V, respectively. According to the flow of
the BFR module shown in Fig. 2, generating Ît is a matter
of reconstructing the face from the boundary domain back
into the image domain while keeping the face’s actions in the
boundary domain. We feed both b̂t and Ît into the patchGAN
with the goal of constraining Ît ’s actions to be consistent with
those of b̂t . As a result, we assume that the greater the amount
of action information carried in the input domain, the better.
In Fig. 10, we can find that the reconstructed image in the
fourth row and seventh column is more consistent with the
latent space’s pose than the reconstructed image in the second
row and seventh column. And this phenomenon indicates that
the ability to constrain action information from the boundary
latent space is stronger than the landmark latent space.

We calculate the quantitative results of landmark based
and boundary based in the same way as the paragraph of
the compared result. The results in Table V also reflect
that the boundary-based generation of faces performs better
on the five metrics mentioned. The generator G F with l̂t as

TABLE VI
QUANTITATIVE RESULTS OF VARIOUS BLOCKS OF VGG-16

input, keeping the hyper-parameter settings consistent with
those in the implementation details, and the generated results
have a FID of 8.152 in the RaFD dataset and a FID of
14.773 in the VoxCeleb-1 dataset. The reasons why the metric
performance still exceeds some previous works are that we use
a better network framework, conditional GAN training, and a
well-designed loss function.

4) Optimal Perceptual Block: Additionally, we conduct
experiments with different blocks of VGG-16 to determine
the optimal local perceptual feature extractor for our model,
and report the results in Table VI and Fig. 11. We denote the
baseline as the L B F R without local perceptual loss. We only
experiment with the output of the first four blocks separately
as the perceptual matrix to participate in the calculation of
Llocal

per because the purpose of VGG-16 is to be implemented
as a chunk-aware low-level extractor, i.e., a local convolution
operator. These various blocks as Llocal

per can be denoted as
L1−2

per , L2−2
per , L3−3

per and L4−3
per . Our goal is to discover the

optimal block of the network to improve the details.
When there is no local perceptual loss involved in the L B F R ,

as shown in Fig. 11, the generated teeth are very blurred, and
even the color of the teeth adheres to the lower lip. In the
generated images of the second, third, and fifth rows, their
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Fig. 11. In the second column from the left, the baseline (BL) denotes the L B F R without local perceptual loss. Others are the quality outcomes of various
Ln

per . The red box circles the places where face generation details are most likely to be blurred, The second and fourth columns illustrate the local generation
results and their groundtruths.

teeth gaps are not clear, while the resulting images of L3−3
per

show clear gaps between each tooth, and the shape of the teeth
resembles that of ground truth. As for the fourth column of
images, when there is no local perceptual loss, the generation
of wrinkles and hairlines fails. For other blocks involved, the
generated hair is either too tiny in size or appears blurred, but
overall, both the tooth and hair generation details demonstrate
that Relu3-3 is the optimal block.

Notably, as seen in Table VI, without L per , the FID
and LPIS are 14.64 and 0.0581, however, after L3−3

per is added,
the FID and LPIS reduce to 4.63 and 0.0167, respectively. The
introduction of local perceptual loss causes FID and LPIPS to
decrease by an order of magnitude compared to what they
would have been in the absence of L per . This is because of

how the two measures are measured; both FID and LPIPS
compare the differences in feature space between the generated
images and the ground truth using pre-trained recognition
networks. Overall, both FID and LPIPS prefer to evaluate an
image’s “goodness” from a human perspective. FID and LPIPS
provide advanced evidence that HR-Net is state-of-the-art.

V. CONCLUSION

We propose a novel method that can transfer one facial
expression and pose to arbitrary identities. First, a light land-
mark identity converter is introduced to address the identity
leakage. We combine both the source landmark and the refer-
ence landmark into the converter, and subsequently, we obtain
the modified target landmark with the source action and the
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reference identity from it. A triple loss is introduced to assist
the converter train and prevent landmark pattern collapse.
Second, a boundary-guided face generator is introduced after
enhancing the target landmarks to a target boundary image.
It is capable of learning action representations on the boundary
images and identity representations on the reference images.
We combine these two different representations into the face
generator to generate more incredible facial images. Further-
more, a local perceptual loss function is implemented to
facilitate the generator in generating results with increasing
detail quality. Extensive ablation experiments and comparisons
with state-of-the-arts on two different datasets demonstrate
our method performs excellently. However, many previous
landmark-based works, including our method, have trained
the individual modules separately. Our future research will
focus on enabling an overall training model framework. At the
same time, we work on generating face images with higher
resolution.
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