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Abstract— Accuratelydelineating individual teeth and the
gingiva in the three-dimension (3D) intraoral scanned (IOS)
mesh data plays a pivotal role in many digital dental applica-
tions, e.g., orthodontics. Recent research shows that deep
learning based methods can achieve promising results for
3D tooth segmentation, however, most of them rely on
high-quality labeled dataset which is usually of small scales
as annotating IOS meshes requires intensive human efforts.
In this paper, we propose a novel self-supervised learning
framework, named STSNet, to boost the performance of 3D
tooth segmentation leveraging on large-scale unlabeled IOS
data. The framework follows two-stage training, i.e., pre-
training and fine-tuning. In pre-training, three hierarchical-
level, i.e., point-level, region-level, cross-level, contrastive
losses are proposed for unsupervised representation learn-
ing on a set of predefined matched points from different
augmented views. The pretrained segmentation backbone
is further fine-tuned in a supervised manner with a small
number of labeled IOS meshes. With the same amount of
annotated samples, our method can achieve an mIoU of
89.88%, significantly outperforming the supervised coun-
terparts. The performance gain becomes more remarkable
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when only a small amount of labeled samples are available.
Furthermore, STSNet can achieve better performance with
only 40% of the annotated samples as compared to the
fully supervised baselines. To the best of our knowledge,
we present the first attempt of unsupervised pre-training for
3D tooth segmentation, demonstrating its strong potential
in reducing human efforts for annotation and verification.

Index Terms— Mesh segmentation, point cloud analysis,
self-supervised learning, tooth segmentation.

I. INTRODUCTION

W ITH the development of Computer-Aided Design
(CAD) techniques, digital dentistry has attracted

tremendous attention with various significant breakthroughs
[1], [2], [3], [4], [5], [6]. In digital dentistry, the intraoral
scanners (IOSs) are widely used as they can generate a digital
impression of the tooth’s anatomy by projecting a light source
on the dental arches, which are considered more accurate
and safer than plaster models. In many dental applications,
a fundamental and preliminary step is to precisely segment
each individual tooth and the gingiva from 3-Dimensional(3D)
dental IOS surfaces [7], which are going to be used for
many diagnosis and treatment planning scenarios, such as
tooth movement simulation or tooth arrangement planning in
orthodontics. Concretely, given an IOS mesh consisting of
triangulated faces, 3D tooth segmentation aims to classify each
face into different teeth and the gingiva following the FDI
standard [8]. However, a single IOS mesh for the upper or low
jaw usually consists of more than 100,000 triangular faces.
It usually takes about 15 to 30 minutes for an experienced
expert to manually or interactively annotate a half jaw, which
is undoubtedly cumbersome and labor-intensive [9]. To enable
more efficient treatment planning, automated strategies are
highly demanded for real-world clinical applications.

Automatic and accurate 3D tooth segmentation remains a
challenging task. First, the dentition and tooth appearance
vary significantly across patients, e.g., the dental arch shapes
(O-, V-, U-shape); tooth numbers (third-molars, hyperdontia),
tooth shapes (attrition, macrodontia, crowding teeth) etc. These
heterogeneous variations impose significant challenges for
achieving robust and accurate performance. Second, the seg-
mentation system needs to generate fine-grained segmentation
for high-resolution meshes with over 100,000 faces, while
slight mistakes in the tooth-tooth or tooth-gingiva boundaries
or failing to recognize tiny tooth parts such as erupted teeth
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might lead to severe issues in subsequent diagnosis. Last but
not least, achieving robust and accurate performance across
diverse IOS scans usually require large-scale annotated dataset,
while a public dataset is not yet available due to privacy issues
and the time-consuming annotation process.

Several deep learning based methods are proposed for end-
to-end 3D tooth segmentation [2], [9], [10], [11], [12], [13].
Some of them employ hierarchical frameworks to delineate
the gingiva and different teeth step by step based on con-
ventional 2D/3D CNNs, which usually suffers from inferior
performance. Recent research designs novel architecture for
3D tooth segmentation, however, most of these methods are
only trained or validated with a small dataset [13] [12],
i.e., less than 50 IOS meshes, as annotating 3D IOS dental sur-
faces requires complex pipelines and intensive human efforts.
Meanwhile, some of them are only applicable to regular
IOS scans, such as scans without third-molar, limiting their
applications in real-world scenarios. Moreover, when these
methods are evaluated in clinical settings, their performance
always degrades due to the inferior generalization ability
across diverse anatomical tooth features [9].

The aforementioned challenges and limitations of current
work motivate us to propose new methods which can achieve
better 3D tooth segmentation performance while requiring
minimal labor-intensive annotations. Recent research has wit-
nessed the great success of unsupervised pre-training strate-
gies for various computer vision, such as SimCLR [14],
BYOL [15], Moco [16], and natural language processing
tasks [17]. As for 3D point clouds, several pioneering works
also investigate unsupervised pre-training for 3D point cloud
processing via occlusion completion, contrastive learning or
spatio-temporal representation learning strategies [18], [19].
There also exist some works that adopt self-supervised learn-
ing methods for 2D/3D grid-structure medical image analysis,
such as [20], [21], [22], [23], [24], and [25]. However, there
are still a significant gap between these methods and our
tasks. On the one hand, these methods are usually proposed
for grid-structure 2D/3D images with contrastive losses based
on instance-level image categories, leading to an embedding
space where all instances are well-separated. However, the
3D tooth segmentation dataset only contains two half-jaw
categories (mandible and maxillary) on non-Euclidean point
clouds, while constructing positive and negative pairs over
them would not lead to performance gain on the low-level
tooth segmentation task. On the other hand, directly applying
existing methods on 2D/3D grid images to the 3D tooth point
cloud segmentation task did not lead to significant perfor-
mance improvement. Domain-specific designs that explore the
geometric features of 3D tooth point clouds or the morpho-
logical structures in the IOS are required to obtain better
performance for 3D tooth segmentation, such as different data
augmentation strategies or architecture designs.

In this paper, we propose a novel method to boost the
performance of 3D tooth segmentation with an unsupervised
pre-training strategy that leverages large-scale unlabeled IOS
meshes. The method is termed STSNet, i.e., Self-supervised
Tooth Segmentation Network. To cope with the high-resolution

mesh data, we formulate the segmentation task over 3D dental
meshes as a fine-grained point cloud semantic segmentation
task as in [12] and [9], avoiding approximation errors in
voxel-based methods. We design a hierarchical self-supervised
learning framework with three contrastive losses, i.e., the
point-level, region-level and cross-level contrastive losses.
These losses perform contrastive learning on different scales,
i.e., point-level contrastive loss for local representation learn-
ing of individual points, region-level loss to capture global
region contextual and morphological features with an addi-
tional Relation-Shape CNN network [26], and cross-level loss
to further bridge the global-local gap by allowing region
representations to guide representation learning of individual
points. By doing so we encourage each point to not only
keep point-level consistencies but also explicitly maintain con-
textual consistencies, which are important for accurate tooth
segmentation. With the Dynamic Graph CNN (DGCNN) [27]
as backbone, the STSNet is first pre-trained over a set of
predefined matched points from different augmented views
obtained via a new augmentation strategy. Afterwards, the pre-
trained network is slightly modified to adapt to the downstream
semantic segmentation task and fine-tuned on a small labeled
dataset for inference.

To evaluate the effectiveness of our method, we construct
a large 3D IOS mesh dataset, consisting of 12,000 unlabeled
IOS meshes and 1,000 labeled meshes. Extensive experiments
reveal that STSNet can achieve an mIoU of 89.88%, which
can be further improved to 93.12% with a widely-used graph-
cut post-processing strategy, significantly outperforming all
supervised counterparts when trained with the same amount
of labeled samples. The performance gain becomes more
remarkable when only a tiny amount of labeled samples are
available, e.g., STSNet outperforms the training-from-scratch
supervised counterpart by a large margin of 21.93% mIoU
when only 1% of labeled samples are available. Furthermore,
STSNet achieves segmentation performance better than the
best fully supervised baselines with only 40% of the annotated
samples. This work is an extension to our preliminary confer-
ence paper [28] but with substantial novel components. The
hierarchical constrastive learning framework is significantly
different from the naive self-supervised PointInfoNCE loss
in [19] and [28]. The detailed strategy to generate augmented
views is improved as well. The unlabeled dataset is enlarged
with more comprehensive results. To the best of our knowl-
edge, our work, including [28], is the first attempt to employ
unsupervised pre-training methods for 3D tooth segmentation,
exhibiting strong potential to reduce human effort for annota-
tion and verification.

The rest of the paper is organized as follows. We introduce
the related work on self-supervised learning and 3D shape
segmentation in Section II, while previous work regarding
tooth segmentation is already discussed in this section. The
details about the proposed self-supervised learning frame-
work is presented in Section III. In Section III, we list the
dataset, experimental setup and implementation, and experi-
ment results with visualizations and discussions. We conclude
the paper in Section VI.
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II. RELATED WORK

A. Self-Supervised Learning

Self-supervised learning has emerged as a common para-
digm to learn powerful representations from unlabeled data,
where the supervisory signals can be generated based on the
structure of the data itself [29], [30], [31]. The represen-
tation pre-trained through self-supervision could be utilized
for fine-tuning multiple downstream supervised tasks with
better generalization and calibration [32], [33]. Contrastive
learning is a typical self-supervised learning approach that
has recently achieved great success and become a milestone
in the field of visual representation learning [14], [16], [34].
The idea of these models is to pull representations from
different augmented views of the same sample closer, while
pushing representations from other samples apart. Recent
work transfers this learning strategy to texts and graphs with
different network architectures and augmenting methods for
self-supervised representation learning. [35], [36]. There are
also several pioneering works that explore self-supervised
learning for 2D/3D grid-structured medical data [20], [21],
[22], [23], [24], [25]. As for 3D grid-structured medical image
segmentation, most of these methods group the images of
each volume into S partitions, each containing consecutive
images [22], or split each volume into slices [23], [24], [25],
which are subsequently converted to image-level contrastive
learning with 2D contrastive learning strategy while adding
some extra domain-specific losses, e.g., losses based on the
temporal feature of the volumetric data. The current unsu-
pervised methods for 3D medical images usually convert
them, such as CT or MRI, into 2D images, and then add
the domain-specific characteristics from each modality. How-
ever, these method is not applicable for 3D tooth segmen-
tation which is defined over high-resolution non-Euclidean
point clouds with complicated anatomical structures. In this
work, we present the first work to systematically explore
whether and how contrastive learning could be leveraged to
solve the 3D tooth segmentation task in a self-supervised
manner.

B. 3D Shape Segmentation

There is a substantial amount of work for 3D shape
segmentation. Some work first transforms the 3D surfaces
or point clouds into voxels [37], which are subsequently
processed by 3D convolutional neural networks. Though there
exist efficient 3D CNN implementations, the computational
overhead is still large, and as mentioned above, some addi-
tional approximation errors are introduced during voxelization,
leading to inferior performance for tasks requiring fine-grained
results on very high-resolution data such as tooth segmenta-
tion. Another line of work takes the raw surface/mesh/point
cloud as input to train a deep neural network, e.g., Point-
Net [38], PointNet++ [39], DGCNN [27], RPNet [40], Cur-
veNet [41]. For example, PointNet designs a novel type of
neural network that directly operates on point clouds while
preserving permutation invariance of points. PointNet++ fur-
ther introduces a hierarchical network based on PointNet on

a nested partitioning of the input points. DGCNN proposes a
novel EdgeConv block to learn semantic representation with
proximities over different hierarchies. Recently, transformer
based architectures are also proposed for 3D point cloud
processing [42]. Though promising, their performance is not
satisfactory when directly adapted to 3D tooth segmenta-
tion. Moreover, there are some work exploring unsupervised
pre-training in 3D vision [19], [43], [44]. However, they
are proposed for general 3D point clouds especially with
experimental results on standard shape recognition dataset
such as ModelNet40 [45] or ShapeNetPart [46], while 3D IOS
surfaces differ from such nature objects significantly in terms
of resolution, shape and structures. Second, the tooth segmen-
tation task requires fine-grained results on high-resolution data,
while previous work is usually examined with coarse-level
predictions.

C. 3D Tooth Segmentation

A lot of works have launched attempts to address the
3D tooth segmentation task in IOS meshes. Traditional
geometry-based methods extract hand-crafted features such as
curvatures from IOS meshes to design decision rules for seg-
mentation [47], [48], [49], [50], [51]. However, these methods
are not fully-automatic and usually require human intervention
for interactive segmentation or post processing to correct the
inferior results. Recently, many pioneering deep learning based
methods [10] have been proposed with superior performance
for 3D tooth segmentation. Some works first extract predefined
features and subsequently apply the 2D or 3D convolutional
neural networks for 3D tooth semantic segmentation [11].
Though with better performance than traditional geometry-
based methods, the hierarchical segmentation procedures in
these works are usually time-consuming and error-prone,
as mistakes occurring in former steps could not be corrected
in later steps. The performance is further boosted with meth-
ods which design specific neural network architectures for
end-to-end tooth segmentation, such as MeshSegNet [12],
DC-Net [9], TSegNet [13], Mask-MCNet [2] etc. In particular,
MeshSegNet integrates graph-constrained learning modules to
extract multi-scale local contextual features; DC-Net presents
an accurate, efficient, and fully automated deep learning model
with uncertainty estimations; TSegNet segments the tooth
based on a two-stage network; Mask-MCNet design a network
based on the Mask-RCNN for tooth instance segmentation.
However, these methods have limitations in terms of the
dataset size and generalization ability across diverse IOS
scans as presented in Section I. Though the DC-Net presents
attempts towards clinically applicable solutions, it relies on
a large-scale annotated dataset which is time-consuming to
collect and not publicly available due to privacy issues [9].
As a result, it’s hard for the community to make further
advancements to meet the requirements for clinical usages.
In our method, we propose a novel self-supervised learning
framework that can take advantage of large-scale unlabeled
dataset to achieve better performance than the supervised
counterparts.
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Fig. 1. The proposed framework for unsupervised pre-training. First, we sample a point cloud Pt from a mesh Mt. Second, a pre-process module,
including the feature extraction and augmented data processing, is devised to generate two input pairs in the region level (Ct1, Ct2) and point
level (Pt1, Pt2). Afterwards, the two pairs are fed into the region- and point-level contrastive learning modules to obtain the RegionInfoNCE and
PointInfoNCE loss values, respectively. Finally, the CrossInfoNCE loss value is calculated by two cross pairs (Pt1, Ct2) and (Pt2, Ct1).

III. METHOD

A. Overview

Given a 3D IOS mesh composed of many triangulated
faces, 3D tooth segmentation aims to classify each face into
different teeth and the gingiva following the FDI standard.
Mathematically, for each face fi in the mesh, we want to
annotate it with a label yi , where yi ∈ {0, 11 − 18, 21 − 28,
31 − 38, 41 − 48} denotes the gingiva and FDI notations for
the 32 permanent teeth, respectively. Our method includes two
steps: unsupervised pre-training and supervised fine-tuning.
In unsupervised pre-training, we first generate two augmented
views of each unlabeled 3D IOS mesh and feed them into the
segmentation backbone. Three different levels of contrastive
losses are designed for unsupervised representation learning on
a set of predefined matched points. Afterwards, the pre-trained
encoder is further fine-tuned in a supervised manner with a
small number of labeled 3D IOS meshes.

B. Feature Extraction and Augmented Data Processing

1) Feature Extraction: Let X = {Mt }L
t=1 be the dataset with

L 3D IOS meshes where Mt = (V , F) denotes the t-th sample
with V and F as mesh vertices and faces, respectively.
We sample a point cloud Pt ∈ R

N×15 from Mt with N points
each associated 15-dimensional features. The 3D coordinate
of each point is the center of the corresponding face, which
is denoted as hc = [x0, y0, z0] ∈ R

3. We further extract more
geometrical features from the original mesh for each point.
In particular, we compute the normal vector hn ∈ R

3, and
a face shape descriptor hs ∈ R

9 as suggested in [9]. For
faces with three vertices vi = [xi , yi , zi ]3

i=1 and a face center
hc = [x0, y0, z0], the face shape descriptor is simply defined
as hs = Concat([vi − hc]3

i=1), where Concat() represents
concatenate operation for vectors. Finally, we concatenate the

three features together as the feature vector of each point in
our point cloud, leading to a 15-dimensional feature vector
h = Concat(hc, hn, hs) ∈ R

15.
2) Augmented Data Preprocessing: It is not uncommon to

generate asymmetric augmented input pairs for better rep-
resentation learning in self-supervised pre-training with con-
trastive learning strategies. As for 3D meshes or point clouds,
the augmented input pair, which usually contains two augmen-
tations with different views of the same input, should bring
much more abundant and diverse training examples while
discouraging the model from learning simple equivariance
of the geometric transformation. Consequently, we generate
two different views as our pre-training input. The pipeline to
generate asymmetric input pairs is elaborated as follows.

We define two input pairs in the region level and point
level. For the input pairs in the region level, we first sample G
center points from the holistic point cloud via farthest point
sampling (FPS). The k-nearest neighbor (kNN) algorithm is
then used to select the n nearest neighbor points for each center
point, grouping G regions, denoted as Rt ∈ R

G×(n+1)×3.
The high-dimensional Rt is represented as low-dimensional
center points set Ct ∈ R

G×3, of which one center point indi-
cates its corresponding point region. We then randomly crop
G0 regions twice from the above G regions, denoted as Rt 1 ∈
R

G0×(n+1)×3, Ct 1 ∈ R
G0×3 and Rt 2 ∈ R

G0×(n+1)×3, Ct 2 ∈
R

G0×3, respectively. Ct 1 and Ct 2 are the input pairs in the
region level. The correspondence mapping between regions
from Ct 1 and Ct 2 are computed as Pmr = {(i, j)} =
�r (Ct 1, Ct 2), where i and j are the index of the matched
region center points xr

i ∈ R
3 in Ct 1 and yr

j ∈ R
3 in Ct 2,

respectively.
For the input pairs in the point level, we first uniformly

downsample Rt 1 and Rt 2 to with N0 points, as they may
contain different numbers of points because of the overlap
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among different regions during the above region generation
process. Then we extract the corresponding features to obtain
two asymmetric augmented input point clouds Pt 1 ∈ R

N0×15

and Pt 2 ∈ R
N0×15. The correspondence mapping between

points from the two point clouds are computed as Pmp =
{(i, j)} = �p(Pt 1, Pt 2), where i and j are the index of
the matched points x p

i ∈ R
3 in Pt 1 and y p

j ∈ R
3 in Pt 2,

respectively. As for �, We follow the method of point cloud
registration [52], [53], [54], i.e., we regard x p

i and y p
j as

corresponding points when ‖x p
i − y p

j ‖2 is less than a certain
threshold (empirically set as 0.75 in our experiments).

3) Transformation: We apply different transformations on
the 3D point clouds to generate different augmented views.
Mathematically, we define the transformation T = [R|t|S],
in which R ∈ SO(3) (3D rotation group in geometry) denotes
the rotation, t ∈ R

3 denotes translation, and S denotes scaling
operations, respectively. For rotation R, we rotate point clouds
with random angles (0 to 360◦) around an arbitrary axis.
Meanwhile, the function t is devised to translate point clouds
globally in the coordinates. The random scale function S is
designed to scale point clouds with a factor randomly chosen
from the range [0.8, 1.2].

C. Unsupervised Pretraining

As shown in Fig. 1, our unsupervised pre-training frame-
work employs a hierarchical contrastive learning architecture,
which enables the encoder to learn three level (i.e. point,
region, cross) consistent representations by shrinking the dis-
tance between samples from the same asymmetric pair in
the hidden space. Specifically, our framework includes the
point-level and region-level contrastive learning module to
learn corresponding representations and three contrastive loss
function for unsupervised training.

1) Point-Level Contrastive Learning: We design the
point-level encoder to learn feature representations of the
extracted point clouds from 3D tooth data, as shown in
Fig. 1. The encoder is inspired by the Dynamic Graph
CNN (DGCNN) [27] with modifications to adapt to the
3D IOS data, which is of much higher resolution and
morphological complexity. Let’s consider Pt1 only. It is
firstly transformed into a standard feature space with the
Transform Net [38]. Second, it is fed to three consecutive
Edge-Conv blocks [27], which consist of a feature extractor
based on kNN strategy, three 2D convolutional layers,
and a max-pooling aggregation operation. Based on an
explicit local graph among neighborhood points defined by
kNN, the Edge-Conv block updates the edge features with
convolutional operations. The features used for kNN are the
corresponding output from the previous block, leading to
updated proximity defined on different hidden representations.
Hence, the stacked Edge-Conv blocks can learn local features
in the bottom layers and global semantic features in the top
layers. With the concatenated representation from different
layers, our backbone is able to capture both local topological
geometry and global features for every point in Pt1 . Such
representations are projected to a consistent hidden space
with a projection head (i.e., a Multilayer Perceptron) for

subsequent contrastive representation learning, following the
standard conventions in many contrastive learning paradigms.

The InfoNCE loss [34] is proposed and has been widely
used for unsupervised pre-training in 2D vision tasks. It is
adopted by contrastive learning frameworks to conduct a
dictionary query process. Here we define the PointInfoNCE
loss [19], [28] over points in the two augmented point clouds.
We define the matched point pairs (i, j) in Pmp as positive
pairs, whose features f p

i ∈ R
d and f p

j ∈ R
d are obtained via

the encoder and projection head. We further define (i, k) as
negative pairs for ∀(i, k) ∈ Pmp, k �= j . In this case, we are
considering points that have at least one matched point pairs
in Pmp as the negative samples, ignoring all other non-match
points for more efficient loss computation. Given the positive
and negative pairs, the contrastive learning loss is defined as:

Lp = − 1

|Pmp |
∑

(i, j )∈Pmp

log
ex p( f p

i · f p
j /τ)

∑
(·,k)∈Pmp ex p( f p

i · f p
k /τ)

,

(1)

where f p
i · f p

j denote the dot product between f p
i and f p

j ,
and τ is the temperature hyperparameter.

2) Region-Level Contrastive Learning: In the previous
section, we introduce a method to maintain point-level con-
sistency. However, many regions of the tooth have their
own inherent characteristics (e.g., the gingival margin, corona
dentis). In order to improve the sensitivity of the encoder to
tooth region morphology, we propose a module to enhance
consistent region-level representations. To obtain an inductive
region representation with explicit reasoning about the spatial
layout of points, we adopt the Relation-Shape CNN (RS-Conv)
network on top of the output from the point-level encoder [26].
Specifically, given an augmented point cloud Pt 1 ∈ R

N0×15

and its center points Ct 1 ∈ R
G0×3, we first group the point

cloud based on the coordinates of center points {xr
i }G0

i=1 with
the kNN strategy. Then, we define the relational coefficient
term vector as hi j = Concat(‖xr

i −x p
j ‖2, xr

i −x p
j , xr

i , x p
j , h p

j ) ∈
R

13, where h p
j is the normal of neighbor x p

j . Hence, hi j

includes geometric priors about both 3D coordinates and
normals between the center point xr

i and its neighbor x p
j ,

which is further processed with RS-Conv layers to learn
high-level relations among the points to better encode shape
information. The computation is defines as:

f̂ r
i = σ(A({M(hi j ) · f̂ p

j , ∀x p
j ∈ N (xr

i )})), (2)

where N is a group function based on the kNN strategy
and f̂ p

j is the feature vector for x p
j , extracted from the

point-level encoder. σ is a non-linear activator. Here f̂ r
i is

obtained by first transforming the features of all the neighbor
points in N (xr

i ) with M(hi j ), where M is a shared multi-
layer perception (MLP) whose goal is to obtain high-level
relations between center points and their neighbor points.
Finally, the aggregation function A achieves the permutation
invariance of point set, which is instantiated as summation
aggregation and multi-layer perceptrons (MLP). This module
can capture a contextual region feature expression from prede-
fined geometric priors as in hi j between point cloud Pt 1 and
its center points Ct1 . Such high-level features are uniformly

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 21,2024 at 12:45:40 UTC from IEEE Xplore.  Restrictions apply. 



472 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 2, FEBRUARY 2023

Fig. 2. The architecture of supervised fine-tuning: Input → Transform Net → EdgeConv → EdgeConv → EdgeConv → Conv2D[1024] → maxpool →
Conv2D[256] → Dropout → Conv2D[256] → Dropout → Conv2D[128] → Output. The number inside the bracket denotes the number of filters for
2D CNNs, e.g., Conv2D[64] means a convolutional layer with 64 filters. Unless otherwise indicated, all the Conv2D layers use a kernel size of [1,1]
and a stride size of [1,1] with batch normalization and Mish activation.

projected to consistent hidden space with a projection head
(i.e., a Multilayer Perceptron), obtaining { f r

i }G0
i=1, f r

i ∈ R
d .

Along the lines of point-level contrastive learning strategy,
positive pair for region i is defined as the matched region
pair (i, j) ∈ Pmr . Negative pairs for region i are presented as
non-matched region pairs ∀(i, k) ∈ Pmr , k �= j . In addition,
only regions that have at least one negative pair are considering
for efficient loss computation. Given all positive and negative
pairs, the contrastive learning loss is defined as follows:

Lr = − 1

|Pmr |
∑

(i, j )∈Pmr

log
ex p( f r

i · f r
j /τ)

∑
(·,k)∈Pmr ex p( f r

i · f r
k /τ)

.

(3)

3) Cross-Level Contrastive Learning: In addition to the above
point-level and region-level representation learning module,
we further propose a novel dense cross-level contrastive loss.
We assume that well-represented points should exhibit the
following properties: embedding for points within a region are
consistent, while embedding for points from different regions
should be sufficiently discriminative. To this end, given the
embedding of point f p

j from Pt1 and region f r
i from Ct2,

we using the following formula to calculate the cross-level
contrastive loss:

Lc
i = − 1

|N (xr
i )|

∑

x p
j ∈N (xr

i )

log
ex p( f r

i · f p
j /τ)

∑
x p

k ∈Pt1
ex p( f r

i · f p
k /τ)

,

(4)

where xr
i is the i-th center point in Ct2 and N (xr

i ) is
the corresponding region points when transform xr

i into the
coordinate system of Pt1. Note that we perform cross-level
contrastive learning between Pt1 and Ct2 rather than Ct1. This
is because the representations in Pt1 and Ct1 are already highly
correlated as they shared the same point-level encoder, while
contrastive learning over Pt1 and Ct2 can bring additional
guidance. Similarly, we define the cross-level contrastive loss
for Pt2 and Ct1. Overall, with the guidance from higher-level
region embeddings, representations between points and their
corresponding region centers are encouraged to be consistent.
In contrast, point representations are pulled away from other

region centers. The final cross-level contrastive learning loss
is defined as:

Lc = 1

2
(

1

|Ct1|
∑

i∈Ct1

Lc
i + 1

|Ct2|
∑

i∈Ct2

Lc
i ). (5)

4) Loss Function: Optimizing over this InfoNCE loss func-
tion would minimize the distance between positive pairs while
maximizing the distance between negative pairs, leading to
good representations for further tooth semantic segmentation.
Now we define the total loss Ltotal based on the above loss
functions:

Ltotal = λLp + (1 − λ)Lr + β · Lc, (6)

where λ and β are weight hyper-parameters.

D. Supervised Fine-Tuning

The unsupervised pre-trained backbone is further modified
and fine-tuned in a supervised manner for the downstream
3D tooth segmentation task. In particular, we use a one-hot
categorical vector to denote the maxillary and mandible for the
input half jaws, which is prior knowledge to avoid confusion
between them during inference. The one-hot vector is further
embedded with a convolutional layer and concatenated with
the point-wise representations from the pre-trained backbone.
The fused representation is used for semantic segmentation
over 32 permanent teeth and the gingiva with a multilayer
perceptron composed of two fully-connected layers and a
dropout layer with a keep probability of 0.4. We use the
cross-entropy loss for supervised fine-tuning. The overall deep
learning architecture is illustrated in Fig. 2. For the categorical
vector, we first cope it with a convolution layer with 64 filters
and then feed the output into our backbone. Based on the above
architecture, the network is capable of handling 3D teeth data
with much higher resolution and morphological complexity.

During fine-tuning, the pre-trained weights serve as initial
weights for the supervised backbone, leading to much faster
convergence and better performance as shown in experiments.
As for inference, we can not feed all the points in IOS meshes
(e.g., 100,000+ points) to our network due to overloaded GPU
memory, while performing multi-step inference for each of the
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Fig. 3. Visualization of IOS scans with diverse morphological features
or diseases.

Fig. 4. Statistics of the number of teeth in each IOS on the training set
(600 patients).

10,000 points is quite time-consuming as well, e.g., we need
10 inference steps for 100,000 points. In this work, we only
inference 40,000 randomly sampled points for each mesh,
and use a simple kNN based voting mechanism to generate
semantic labels for all the rest points. Such a strategy brings
with some performance degardation compared to the multi-
step method, but with better efficiency. More investigation of
this inference strategy is reported in the experiments.

IV. EXPERIMENT

A. Implementation Details

1) Dataset and Experimental Setup: We collect a large 3D
IOS tooth mesh dataset, which consists of 12,000 unlabeled
and 1,000 labeled 3D IOS mesh data from patients in China.
The IOSs are aligned with predefined templates to transform
to roughly the same reference positions during pre-processing.
Fig. 3 exhibits the diversity of our dataset. The dentition and
tooth appearance vary significantly across patients, e.g., the
dental arch shapes (O-, V-, U-shape); tooth numbers (missing
teeth), tooth shapes (crowding/erupted teeth) etc. The statistics
of the number of tooth in each IOS in the training set
are displayed in Fig. 4, exhibiting the diverse numbers of
tooth across different patients. As for supervised training,
We randomly split the labeled data to 60% for training, 20%
for validation and 20% for testing in which the number of the
mandible and the maxillary jaws are not strictly equal.

In unsupervised pre-training period, we use the SGD opti-
mizer with learning rate η1 = 0.1 and an exponentially

decay factor 0.99. The hyperparameter τ = 0.07 in three
contrastive losses and. During fine-tuning, we use SGD with
an initial learning rate η2 = 0.1 that decays until 0.001 with
cosine annealing. We use k = 25 for the kNN step in Edge-
Conv blocks, and the network is trained with a batch size
bs = 4 over N0 = 8, 000 points and G = 1, 024, G0 =
717 regions in pre-training, and N = 20, 000 points in
fine-tuning. We set λ = 0.5 and β = 0.2. The net-
work is pretrained with 120 epochs and finetuned with
400 epochs.

2) Post-Processing: The segmentation results produced by
deep neural networks may be coarse around the tooth-tooth
and teeth-gingival boundaries. Meanwhile, some isolated false
predictions also occur. Hence, it is common to adopt the
graph-cut based post-processing strategy which could sig-
nificantly refine the segmentation [9], [10], [12]. We report
the results with and without graph-cut smoothing in our
experiments.

3) Metrics: We comprehensively evaluate the performance
of our method with various metrics, i.e., mIoU, Dice Similar-
ity Coefficient (DSC), and point-level classification accuracy,
where a higher value indicates better segmentation perfor-
mance. All of these metrics are computed following the
conventional definitions.

B. 3D Tooth Segmentation Performance

We compare our method with extensive baselines in recent
works (e.g., PointNet [38], PointNet++ [39], DGCNN [27],
MeshSegNet [12] and DC-Net [9]). The results are reported in
Tab. I. We use ∗ to denote methods with the graph-cut smooth-
ing and † to denote methods with large unlabeled dataset
(12,000 unlabeled mesh). Our STSNet† achieves state-of-the-
art performance compared with all supervised baselines which
are trained with the same amount of annotated samples. In par-
ticular, the STSNet† also surpasses the modified DGCNN
with a significant improvement of 3.33% mIoU and 2.84%
DSC. This demonstrates that our unsupervised pre-training
method can achieve non-trivial performance improvement,
even with the same backbone as its supervised counterparts.
Another remarkable achievement is that the STSNet† can
achieve better performance than the DC-Net∗, which already
integrated a graph-cut smoothing, with 1.18% DSC and 0.37%
mIoU. STSNet†∗ further yields 93.12% mIoU and 94.85%
DSC with graph-cut smoothing, mainly attributing to the
great improvement over the mandible segmentation. Such
a performance is extraordinarily better than all supervised
baselines.

Moreover, we compare our method with several classical
self-supervised methods (e.g., SimCLR [14], BYOL [15],
Moco [16]). All above methods are trained with the same
data augmentation strategy and backbone as our STSNet.
We follow the same settings with Moco and BYOL to
transfer our pre-trained encoder to the downstream task
(e.g., segmentation). The results are in Tab. I. The best-
performing one (SimCLR) can only achieve 1.16% mIoU
improvement over the corresponding supervised counterpart
(DGCNN), which is still inferior than the best supervised
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TABLE I
SEGMENTATION RESULTS OF STSNET AND BASELINES. ∗ DENOTES METHODS WITH GRAPH-CUT SMOOTHING; 	 DENOTES METHODS WITH

DOMAIN-SPECIFIC DATA AUGMENTATION IN OUR DATASET; † DENOTES PRE-TRAINING WITH LARGER DATASET(12,000 UNLABELED DATA)

TABLE II
SEGMENTATION PERFORMANCE WITH LIMITED LABELED TRAINING DATA FOR FINE-TUNING

TABLE III
SEGMENTATION PERFORMANCE OF STSNET PRE-TRAINED WITH

DIFFERENT AMOUNTS OF DATA

DC-Net model. In contrast, STSNet achieves 3.22% mIoU
improvement, which already surpasses the best supervised
model, demonstrating its great effectiveness on 3D tooth
segmentation.

We further investigate the effect of pre-training with
different amounts of unlabeled data, with results in Tab. III.
When using 10% of unlabeled 3D IOS data (1,200 sam-
ples) during pre-training, STSNet still achieves 96.44% accu-
racy, 89.40% mIoU and 92.38% DSC. Compared to the
supervised DGCNN model, it has 2.85% mIoU improve-
ment, revealing that STSNet can still achieve impressive

performance even using a limited number of unlabeled
samples. Meanwhile, with the increasing amount of unlabeled
pre-training data, all the evaluation metrics are constantly
improved, convincingly demonstrating the effectiveness of our
method.

We also conduct experiments to evaluate the effectiveness
of using different amounts, i.e., 1%, 5%, 10%, 20%, 40%,
100%, of the labeled data during fine-tuning, with results
shown in Tab. II. We use ’from scratch’ to denote the our
DGCNN backbone trained without weight initialization from
the pretrained STSNet. When trained with only 1% labeled
data, DGCNN trained from scractch can only achieve 68.19%
accuracy, 44.92% mIoU, and 54.01% DSC. In stark contrast,
our method significantly outperforms it with 88.30% accuracy,
66.85% mIoU, and 74.03% DSC. The above two experiments
demonstrate that unsupervised pre-training is an effective solu-
tion for tooth segmentation when the annotated data is severely
limited. We can also notice that, with 40% labeled data, our
method surprisingly achieves 88.27% mIoU, even surpassing
all the supervised baselines trained with 100% labeled data in
Tab. II.
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Fig. 5. Visualization of segmentation results of STSNet and baselines for two cases. See boxes for detailed comparison.

TABLE IV
STSNET PRETRAINED WITH DIFFERENT AUGMENTATIONS

C. Ablation Studies

We conduct ablation experiments with several settings,
including different transformations, loss functions and back-
bones to further understand the STSNet. Note that all ablation
studies are conducted under 6,000 unlabeled data.

1) Ablation Study of Augmentation Strategies: Augmenta-
tion strategies usually have a non-trivial influence over the
performance of unsupervised pre-training methods. Hence,
we conduct an ablation study to quantitatively evaluate the
effect of different augmentation methods during pre-training.
The results are shown in Tab. IV. We can notice that rotation
brings more remarkable improvement compared to translation
and scale operations for unsupervised pre-training, which
achieves 96.76% Acc, 89.48% mIoU and 92.20% DSC. When
translation and rotation operations are simultaneously adopted,
satisfactory performance is achieved, exceeding the supervised
counterpart with 3.22% mIoU.

2) Ablation Study of Contrastive Losses: We also conduct
ablation study on the coefficients in the contrastive loss.
The results for different weighting coefficients in λLp +
(1 − λ)Lr + βLc are shown in Tab. V. We can notice
that the performance is not very sensitive to the weighting
between point- and region-level losses, i.e., all of them are
above 89% mIoU and 92% DSC without post-processing,
which are better than the best-performing supervised DC-Net
model, i.e., 87.34% mIoU and 90.67% DSC without graph-cut
processing. Adding the cross-level loss Lc but the selection of
β in the range of [0.2, 0.5] has little influence to the overall
performance.

TABLE V
ABLATIONS OF THE COEFFICIENTS IN CONTRASTIVE LOSSES

TABLE VI
SEGMENTATION PERFORMANCE ON DIFFERENT BACKBONES

3) Ablation Study of the Backbone: We investigate the effec-
tiveness of STSNet for different backbones with experiments
on the widely-used PointNet and DGCNN models. The results
are shown in Tab. VI. We can notice that our method can
achieve 2.40% mIoU improvement compared to the supervised
PointNet model. Meanwhile, the results of STSNet(DGCNN)
over DGCNN and DC-Net also demonstrate the effectiveness
of our method for DGCNN-like backbones. We also plot the
training curve of for both backbones in two scenarios: training-
from-scratch or supervised finetuning after pretrained with
STSNet. We can find that backbones with STSNet converge
much faster during training, as shown in Fig. 6. These results
empirically demonstrate the consistent effectiveness of our
method across different backbones.

D. Visualization

We demonstrate the superiority of STSNet† with case
visualization in Fig. 5. The baselines are easy to commit
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Fig. 6. The training loss curve with STSNet on different backbones
during supervised fine-tuning. Left: DGCNN, Right: PointNet. Green
and red curves indicate results for training-from-scratch and STSNet,
respectively.

mistakes such as: (1) failing to recognize the molars, (2) fail-
ing to identify the tooth-tooth or tooth-gingiva boundaries;
(3) misclassifying the tooth codes, (4) generating wrong and
isolated tooth predictions for some small tooth parts. In stark
contrast, the STSNet† seldomly commits such mistakes. Espe-
cially, the STSNet† can produce clear tooth predictions and
rarely generates isolated tooth predictions, though many of
these errors could be corrected by graph-cut smoothing. This
is consistent with the superior performance of STSNet†∗
compared to DC-Net∗.

V. DISCUSSION

A. Statistical Analysis

We analyze the statistical performance of our method in
each individual tooth to verify its effectiveness across diverse
IOS scans, as each tooth might possess different anatomical
features and boundaries. We also associate the corresponding
missing ratios in our test set, the ratio of patients without
the corresponding tooth, for detailed analysis. The results are
reported in Tab. VII. Our method achieves consistent improve-
ments over the baseline on all teeth, and achieves impressive
improvements for many teeth, such as the first premolar and
the third-molars (the 4-th and 8-th teeth). An interesting
finding is that the improvements become more prominent
for teeth with higher missing rate, e.g., an improvement of
more than 10% mIoU for third-molars. This is maybe because
our model learns better representations for the third-molar
leveraging the large-scale unlabeled dataset that contains more
corresponding samples.

Moreover, we also investigate the performance of our model
in the IOS level with respective to different numbers of tooth
in each IOS. The results are illustrated in Fig. 7. We can
notice that our STSNet can achieve consistent performance
improvement than the training-from-scratch supervised base-
line in both maxillary and mandible across different numbers
of teeth.

We further provide more random visualizations of the
segmentation results of our method and the supervised coun-
terpart, as shown in Fig. 8. We can see that our STSNet
can better recognize the molars and the crowding adjacent
teeth, is stable across different dental arches, and performs
better for tooth-tooth/tooth-gingiva boundaries (case 1, 4) and
for patients with dentural diastema (case 3) or erupted teeth
(case 2, 3, 4), etc, demonstrating its effectiveness across
various IOSs.

Fig. 7. Statistics of the performance w.r.t. number of tooth per IOS. (Left:
mandible, Right: maxillary).

Fig. 8. Visualization of segmentation results on diverse IOSs. Top to
bottom: case 1, 2, 3 and 4.

B. Effectiveness of Dynamic Graphs in the Backbone

We conduct experiments to find how the dynamic graphs
along the DGCNN backbone contribute to the final perfor-
mance. Particularly, we do experiments with two different
architectures: 1) DGCNN with dynamic graphs; 2) DGCNN
without dynamic graphs, i.e., computing the nearest neighbors
based on the 3D coordinates. Results are reported in Tab. VIII.
In general, DGCNN with dynamic graphs outperforms the
counterpart without dynamic graphs in both supervised and
unsupervised settings, i.e., an improvement of 0.93% and
1.92% on mIoU.
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TABLE VII
STATISTICAL PERFORMANCE ON INDIVIDUAL TOOTH OF THE TRAINING-FROM-SCRATCH BASELINE/STSNET† ON THE TEST SET (200 PATIENTS).

NUMBERS IN THE BRACES DENOTE THE PERFORMANCE GAIN OF STSNET†

Fig. 9. Visualization of the learned neighbors in feature spaces produced
by backbones with or without dynamic graphs. Red: Anchor points; Black:
Learned neighbor points.

TABLE VIII
SEGMENTATION PERFORMANCE FOR BACKBONES

WITH/WITHOUT DYNAMIC GRAPHS

A more straightforward visualization of the selected neigh-
bors in the backbone is illustrated in Fig. 9. We randomly pick
a set of anchor points and visualize their corresponding nearest
neighbors in the feature space. We can notice that the neigh-
bors selected by the network without dynamic graph are less
accurate than the network with dynamic graph, i.e., it might
wrongly select neighbors from adjacent molars. These results
demonstrate the effectiveness of using dynamic graphs along
the backbone.

C. Exploration of Semi-Supervised Methods

We explore the self-supervised learning methods on our
dataset by experiments with the widely-used Self-training
method [55], [56]. It includes three steps without the need
of iterative training: 1) Supervised Learning: Train a teacher
model T on Dl with cross-entropy loss. 2) Pseudo Labeling:
Predict one-hot hard pseudo labels on Du with T to obtain
D̂u = {(ui , T (ui ))}N

i=1. 3) Re-training: Re-train a student
model S on the union set Dl ∪ D̂u . We also try to combine
our method with general semi-supervised methods. Following
the setting in SimCLR v2 [57], which includes three steps
without iterative training: (1) unsupervised or self-supervised
pre-training, (2) supervised fine-tuning, and (3) distillation
using unlabeled data, we first apply our STSNet on 6,000
unlabeled 3D IOS data in pre-training and 600 labeled data in

TABLE IX
RESULTS WITH SEMI-SUPERVISED LEARNING

fine-tuning to obtain a tooth segmentation network. Then we
use the fine-tuned network as a teacher to impute labels for
training a student network (we also combine the labeled data
in training student network as suggest in SimCLR v2). The
student network is used for the final tooth segmentation.

The preliminary results are reported in Tab. IX. We can note
that, under the same data budget (6,000 unlabeled and 1,000
labeled data), a simple self-training scheme achieves 1.64%
mIoU improvement to the supervised counterpart, though
it is still a bit worse than our specifically-designed self-
supervised strategy. Using STSNet to generate pseudo label
and re-training achieves 3.42% mIoU improvement compared
to the supervised counterpart, further exceeding our STSNet
by 0.2% mIoU, which is consistent with the results in SimCLR
v2. We will further explore this based on such promising
results.

D. Effectiveness of STSNet on Public Dataset

We conduct experiments on the ShapeNetPart [46], a public
3D point cloud dataset. We further compare our results to
Point-BERT [44] (following the same experimental settings,
we pretrain our model on ShapeNet [58], and then finetune
it on ShapeNetPart.) Please note that Point-BERT [44] is
based on generative self-supervised learning but not con-
trastive learning, and it is later than our work. The results
are reported in Tab. X. We also include the PointContrast [19]
for more comprehensive comparison, as there are very few
works for 3D self-supervised learning on point cloud, though
it is based on voxel method. We can notice that PointBERT,
achieves a 0.5% performance gain, and PointContrast reports a
0.4% performance gain. Our STSNet also achieves competing
performance with 0.5% performance gain, demonstrating its
effectiveness on other public dataset.

Furthermore, we investigate the effect of pre-training with
different amounts of unlabeled data, with results in Tab. XI.
We also introduce ModelNet40 [58] (contains 12,311 clean
3D CAD models) to our pretraining dataset, which is used
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TABLE X
SEGMENTATION PERFORMANCE (MIOU) ON SHAPENETPART OF

STSNET AND BASELINES. ‘FROM SCRATCH’ DENOTES THE

PERFORMANCE WITHOUT UNSUPERVISED PRE-TRAINING

STRATEGY; ‘W PRE-TRAINING’ REPRESENTS THE

PERFORMANCE WITH UNSUPERVISED PRE-TRAINING;
Δ DENOTES THE PERFORMANCE GAIN; ‘DATA FORMAT’
DENOTES THE DATA (VOXEL/POINT) DURING TRAINING

TABLE XI
SEGMENTATION PERFORMANCE (MIOU) OF STSNET PRE-TRAINED

WITH DIFFERENT AMOUNTS OF DATA (PUBLIC DATASET)

to verify the effectiveness of extra data. In public dataset
ShapeNet, when using 10,000 data during pre-training, our
model achieves 0.29% performance gain. As the amount of
data increases gradually, the performance is further improved,
finally reaching 0.49%performance gain. With the addition
of other dataset ModelNet40, our model can only get a
slight boost, about 0.04%. The possible reason for this little
improvement may be that the public 3D object data are rela-
tively simple (man-made), and the ModelNet dataset is quite
different from ShapeNet, i.e., regarding as out-of-distribution
(OOD) data. Though some recent research suggest that OOD
data could also be leveraged for better self-supervised long-
tailed learning in 2D images [59], a better design is yet
under development to effectively integrate OOD data in the
pre-training for 3D data.

E. Inference Strategy and Post-Processing

We further demonstrate the segmentation results when
inferred with different amounts of points before kNN and
graph-cut smoothing, as shown in Fig. 10. With the increas-
ing number of inference points, both training from scratch
and STSNet will will have a performance improvement,
e.g., STSNet can further achieve 90.60% mIoU with 80,000
point with 0.72% improvement over result in Tab. I. Mean-
while, graph-cut smoothing can boost the performance of both
DC-Net and STSNet, mainly by refining the boundaries and
correcting isolated predictions.

F. Limitation

There are nevertheless some limitations of our work.
First, as the first attempt for self-supervised 3D tooth seg-
mentation, our work can be further improved in terms of
the self-supervised framework. More augmentation strategies,
architectures and loss functions could be explored for better
performance. The computational complexity of self-supervised
learning method could also be investigated to develop more

Fig. 10. The segmentation result of several methods with different points
during post-processing.

Fig. 11. Visualization of errors in incisors.

efficient learning paradigms. Second, the geometrical and
topological features in the original mesh scans are not fully
exploited either with supervised or unsupervised strategies for
tooth segmentation. Finally, the robustness and generalization
ability across complicated cases could be improved. Based
on our statistical analysis, we can find that our method can
still be improved a lot, especially for some hard teeth, such
as incisors or third-molar. In fact, there would always be
hard IOS cases that cannot be resolved by end-to-end deep
learning models, hence, the generalization ability, or moreover,
the interpretability of such 3D tooth segmentation systems
need to be considered in the future, especially with the goal
of deploying clinically applicable solutions for diagnosis and
treatment planning.

VI. CONCLUSION

In this paper, we propose the first unsupervised pre-training
framework with three hierarchical level contrastive learning
loss functions for 3D tooth segmentation in introoral mesh
scans. The extensive experiments convincingly corroborate
the effectiveness of the proposed unsupervised pre-training
strategy for helping alleviate the necessity of large-scale
labeled training data for accurate 3D tooth segmentation.
In future work, we will further investigate more advanced
self-supervised learning strategies for better representation
learning, e.g., adding additional variance or covariance reg-
ularizations [60] in point or region embeddings. We will also
investigate advanced semi-supervised learning approaches,
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which might help achieve improved performance over com-
plicated IOS scans with heterogeneous anatomical features for
clinically applicable diagnosis.
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