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ImTooth: Neural Implicit Tooth for Dental Augmented Reality

Hai Li*, Hongjia Zhai*, Xingrui Yang, Zhirong Wu, Yihao Zheng, Haofan Wang,
Jianchao Wu†, Hujun Bao, Guofeng Zhang†

Fig. 1. Overview of ImTooth system and its potential application in dental augmented reality. Our system provides three major functions,
i.e. data acquisition, neural implicit reconstruction and pose estimation. We also show the potential application of our system for tooth
bracket placement navigation in orthodontics.

Abstract— The combination of augmented reality (AR) and medicine is an important trend in current research. The powerful display
and interaction capabilities of the AR system can assist doctors to perform more complex operations. Since the tooth itself is an
exposed rigid body structure, dental AR is a relatively hot research direction with application potential. However, none of the existing
dental AR solutions are designed for wearable AR devices such as AR glasses. At the same time, these methods rely on high-precision
scanning equipment or auxiliary positioning markers, which greatly increases the operational complexity and cost of clinical AR. In
this work, we propose a simple and accurate neural-implicit model-driven dental AR system, named ImTooth, and adapted for AR
glasses. Based on the modeling capabilities and differentiable optimization properties of state-of-the-art neural implicit representations,
our system fuses reconstruction and registration in a single network, greatly simplifying the existing dental AR solutions and enabling
reconstruction, registration, and interaction. Specifically, our method learns a scale-preserving voxel-based neural implicit model from
multi-view images captured from a textureless plaster model of the tooth. Apart from color and surface, we also learn the consistent
edge feature inside our representation. By leveraging the depth and edge information, our system can register the model to real
images without additional training. In practice, our system uses a single Microsoft HoloLens 2 as the only sensor and display device.
Experiments show that our method can reconstruct high-precision models and accomplish accurate registration. It is also robust to
weak, repeating and inconsistent textures. We also show that our system can be easily integrated into dental diagnostic and therapeutic
procedures, such as bracket placement guidance.

Index Terms—Artificial intelligence, Neural implicit representation, Dental Mixed / Augmented reality
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1 INTRODUCTION

In recent years, augmented reality (AR) technology has made great
progress and is gradually integrated into multiple application fields.
Wearable AR devices, especially AR glasses, have greatly improved
existing visualization methods and laid the foundation for a new gener-
ation of interactive displays.

For the medical field, AR technology is particularly important.
Whether it is preoperative planning or intraoperative navigation, AR’s
powerful virtual-real integration and interaction ability can effec-
tively assist doctors in decision-making and completing accurate
surgery [34, 42, 59]. The current medical AR is still in the early stage.
Due to the complex structure of human organs and strict requirements
for accuracy, further research and development are required for both
algorithms and hardware. Among all medical disciplines, dental AR is
one of the most promising research directions [21, 30, 60]. The obvious
structural features and rigid body properties of the teeth make them
more suitable for reconstruction and localization than other organs,
which is also the basis for building practical AR applications. However,
the existing dental AR solutions [48, 51, 56, 57] still need to rely on
high-precision sensors or external positioning markers, which undoubt-
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edly increases the cost and operation difficulty of AR. Moreover, these
solutions cannot be applied to AR glasses, which weakens their appli-
cation scope. In this work, we mainly focus on designing a lightweight
dental AR system that is suitable for AR glasses and support basic
functions required by dental AR.

In common dental practices, such as orthodontics, a complete 3D
reconstruction of the patient’s teeth is a prerequisite before diagno-
sis and treatment. This step is usually performed with conventional
reconstruction methods from high-accuracy intraoral structured-light
sensors, which makes the process considerably expensive. In com-
parison, plaster casts of teeth are more versatile and inexpensive, but
traditional reconstruction methods are often impractical due to their
indistinct texture. The recent emergence of neural implicit represen-
tation [35, 36, 58, 62] provides a solution to handle such objects. By
considering per-pixel color information, the Multi-Layer Perceptron
(MLP) based model can easily capture the consistency across all views
and learn the geometry and appearance information implicitly. Not
only that, but recent works have also shown the pose optimization
ability [29] benefits from the fully differentiable architecture of neural
implicit representation. This inspired us to think about AR solutions in
dentistry from a new perspective.

We design an integrated dental AR system that supports recon-
struction, registration, and interaction based on AR glasses (Microsoft
HoloLens 2) without additional sensors. We call this system ImTooth,
for it leverages the most state-of-the-art neural implicit representation
as the core component. As shown in Figure 1, our system uses a single
AR Glasses as the only sensor and display device, which enhanced
portability and versatility. Different from other methods, we use the
plaster teeth models as our reconstruction target and learn a voxels-
based neural implicit representation [27] which is editable and flexible.
The learned representation can be directly used for pose estimation
without extra training.

To make our system easier to operate, we propose a scale-preserving
reconstruction algorithm, which takes raw data captured from HoloLens
2 and reconstructs it in real size without the complicated pre-processing
and post-processing procedures used in most of the existing methods.
To compensate for the domain gap from the plaster model to the actual
oral cavity, we also incorporate edge information into the neural implicit
representation during reconstruction. We demonstrate the potential
application of our AR system with a navigation application for tooth
bracket placement.

The major contributions of our proposed approach are summarized
as follows:

• We propose a lightweight dental AR system based on neural
implicit representation that supports AR glasses-based reconstruc-
tion, registration, and interaction. It provides a low-cost and
high-precision solution for AR applications in dentistry.

• We propose a scale-preserving implicit reconstruction method
alone with consistent edge representation, which supports the
accurate reconstruction and registration.

• We propose a method that implicitly learns consistent edges and
enables direct pose registration via edge alignment without addi-
tional networks.

• We build a potential AR application for bracket placement guid-
ance based on our AR system.

2 RELATED WORKS

In this section, we review the works most relevant to the proposed
method, including neural implicit surface reconstruction, visual local-
ization, and dental augmented reality.

2.1 Neural Implicit Surface Reconstruction
Neural implicit representations of 3D surfaces have attracted a lot of
attention in the field of 3D reconstruction. Compared to traditional
method [47], the geometry information of the scene is represented by a
neural network that outputs the signed distance field or occupancy field,

which can be used to generate consistent novel views. Neural implicit
approaches can reconstruct the scene with a set of posed images, which
don’t need 3D supervision information. NeRF [35] is the representative
work that introduces the use of volumetric rendering and neural net-
works to represent the spatial density and appearance of the 3D scene
and achieves impressive results for novel view synthesis. However,
NeRF-based methods [11, 32, 35, 64] can’t obtain the high-quality 3D
geometrical structure of the scene. To solve this issue, some works are
proposed to regress the signed distance value and use it in the volume
rendering equation. NeuS [58] proposes to replace the density with
neural SDF representation which can handle the self-occlusion situa-
tion and build a bridge between the SDF and volume rendering. Based
on [58], some works are developed to utilize the additional geometry
information to improve the reconstructed neural implicit surfaces, such
as depth [5], and normal [65]. These works leverage the capacity of
full-connected layers to encode entire scenes with a learned mapping
function.

However, a single MLP has limited representation ability and cannot
scale well to large scenes, and the coordinate input can be unstable on
large scales. Therefore, most of the works pre-scale the potential scene
to a smaller area, usually a unit sphere or cube. To reconstruct high-
quality results of the large-scale scene, Vox-Surf [27] adopts a sparse
voxel structure to divide the spatial regions and store the geometry
features in the nodes of the voxel. This way can save computational
resources by only reconstructing occupied voxels, which can also be
subdivided to recover finer details in large-scale scenes. In this work,
we move one step further toward practicality. We consider incorporating
joint camera pose and scene optimization into a voxel-based neural
implicit representation, thereby alleviating complex pre-processing.

2.2 Visual Localization

Visual localization is the fundamental step for many augmented reality
applications, which aims to estimate the precise position and orientation
of the query image with respect to a pre-built 3D map. Generally, the
visual localization approaches can be classified into pose regression,
coordinate regression, and feature-based methods. Pose regression
methods [9, 24, 25] directly regress the pose from the extracted fea-
ture of a single image, however, which is not competitive in terms of
localization accuracy. The coordinate regression methods [7, 8, 49]
aim to estimate the 3d coordinates of the pixel in the camera view and
apply Perspective-n-Point (PnP) to solve the pose of the query image.
Different from pose regression methods, the coordinate-based methods
use PnP to replace the pose regression process, which is more inter-
pretable and achieves better performance. Finally, the feature-based
visual localization methods [18, 44, 52] usually consist of two steps,
global image retrieval [2, 3, 13, 16, 20, 22, 38, 39], and local feature
matching [12,23,41,50,53]. This kind of method applies a hierarchical
localization way to support large-scale scene localization and has the
best generalization ability compared to pose and coordinate regression
methods. Among the above three kinds of approaches, the feature-
based approach is the most practical and has the best generalization
performance.

For the global image retrieval step, feature-based visual localization
methods usually use retrieval-based methods to provide an approximate
pose of a given query image. NetVLAD [2] proposes to aggregate
patch-level features through a trainable VLAD layer. Other retrieval-
based methods propose new approaches to handle weakly supervised
information [17] and patch-level features [20]. For the local feature
matching step, keypoint detection and description are first performed
on the query image to obtain discriminative and repeatable keypoints.
The hand-crafted feature [31] and deep learning-based feature [14, 15]
can be used in this process. After obtaining the descriptor of the key-
points, feature matching is performed between the query image and
the database to obtain 2D-3D matching pairs. Finally, the pose of
the query image can be obtained via the RANSAC and PnP process.
HLoc [44] is currently the most mainstream approach for feature-based
localization methods. It utilizes the best feature point descriptor, Super-
Point [14], and a feature matching method, SuperGlue [45], to achieve
good generalization results in different scenarios.
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Fig. 2. Demonstration of the shared core module of ImTooth. The reconstruction module learns the embedded voxels and the extractor of the implicit
scene and the registration module leverages the learned scene for direct pose optimization via backpropagation to the camera pose. The blue arrow
is the forward propagation, the red is the backpropagation and the dotted line indicates the reconstruction phase only.

2.3 Dental Augmented Reality

For dentistry, augmented reality (AR) technology can superimpose the
virtual tooth model reconstructed from the oral image on the corre-
sponding oral position of the patient, so as to enhance the doctor’s
visual system and improve the surgical ability through some informa-
tion interaction and guidance. Besides, some dental education appli-
cations [40, 55] are proposed for the training process of the doctors,
which guide the doctor to correct the posture with the dental extraction
simulator. In the orthodontic filed [1], AR technology was also used for
guiding the bracket placement in orthodontics correction according to
the edge information of the teeth. Among those AR applications, regis-
tration technology plays an extremely important role, which decides
the accuracy of the orientation and position of the virtual model placed
in the real world.

Some approaches use manual marker points or artificially placed
objects to achieve good registration performance. The camera can iden-
tify the markers and object points in the image and use this information
to track and register the virtual models. Some common image mark-
ers are, ARToolKit, ARTag, Visual Code, and AR Studio. However,
those marker-based methods need to artificially place some objects in
the real world, which may be impossible or harmful during medical
surgery. Another kind of approach is natural feature-based tracking
registration technology. Natural feature-based methods are proposed to
extract the reference points from the real world and consist of feature
point extraction and matching algorithms. The registration speed and
accuracy correlate to the key points detection and description algo-
rithms. The existing algorithms that are commonly used for keypoint
detection are SIFT [31], SURF [6], and FAST [54] and description
algorithms are ORB [43], BRIEF [10], and BRISK [26]. In recent
years, methods based on deep learning have gradually emerged, such as
SuperPoint [14] and D2Net [15] etc. These methods have strong gener-
alization ability and have been widely used in academia and industry.
However, it is sensitive to scene and texture changes, and such methods
based on indirect features are usually unable to further optimize the
matching position, which will affect the accuracy of the pose. There-
fore, we propose to directly optimize the pose via pixel-level feature
differences for higher accuracy.

3 METHODS

The proposed ImTooth system consists of two modules, an implicit
reconstruction module, and a pose registration module. They share
a common core module as shown in Figure 2. This module learns
multiple information about the scene implicitly during reconstruction
and can be directly used to optimize the pose during registration.

To reconstruct the detail of the teeth model, we adopt the idea
of voxel-based neural implicit representation proposed in Vox-Surf
[27], which is flexible and lightweight compared to other methods
[36, 58, 62, 63]. We first briefly review several basic concepts.

Voxel-based Neural Implicit Representation. In voxel-based neural
implicit representation, the scene is divided into a set of axis-aligned
voxels {Vi}. For each voxel, Vi, its eight corners store independent
embedding vectors, e, which encodes the geometrical and appearance
information of the scene and can be optimized during the training
process. For point p ∈ R3 within one voxel Vi, its embedded feature
vector can be obtained via the retrieval function Γ, which tri-linear
interpolate the embedding vector from eight corners according to point
coordinate. Vox-Surf adopts two MLP-based networks Fσ and Fc to
extract view-dependent radiance, c, and signed distance value, σ .

Fσ ,Fc : (e,d) → (c,σ), (1)

where d and e = Γ(p) are the 2D view direction and feature vector at
3D position p, respectively. The SDF value σ represents the distance
from point p to the closest point on the underlying surface S . Thus,
the surface can be easily extracted by the following equation:

S = { p ∈ R3 | Fσ (Γ(p)) = 0 }. (2)

Volume Rendering. Rendering with neural implicit representation is
usually based on volume rendering [33, 35], which is the accumulation
of the color c of the Np sample points along the ray r with respect to
the density α (Equation 3). Each ray is emitted from the center of the
camera o in direction d and passes through a pixel on the image. The
points on the ray are denoted as r(t) = o+ t ·d, where t is the depth for
each sampled point.

C(r) =
Np

∑
i=1

T (ti)αi(ti)ci, (3)

T (ti) =
i−1

∏
j=1

(1−α(t j)). (4)

To convert the SDF value σ to density α , we leveraged the density
conversion function Equation 5 proposed in [58].

α(ti) = ReLU(
Φs(σi)−Φs(σi+1))

Φs(σi)
), (5)

where ReLU(·) is the Rectified Linear Unit, and Φs(·) is the Sigmoid
function.

Limitation in Existing Reconstruction. Most existing neural implicit
reconstruction methods [36, 58, 62, 63] requires a complicated pre-
processing procedure to stabilize the training process. A common
procedure is to pre-reconstruct the scene with structure-from-motion
algorithms, such as COLMAP [46] to get the camera poses. These
poses are further transformed to make sure the latent surface is inside a
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Fig. 3. Frame-wise pose optimization. We propose a coarse-to-fine reconstruction manner to optimize the raw pose from HoloLens 2 in two steps.
The top line shows the camera pose optimization result and the bottom line shows the depth point visualization of multiple frames during optimization.

unit sphere. Although Vox-Surf [27] relieves the latter step, an accurate
6 DoF pose is still necessary. However, this pre-processing method has
two problems. Firstly, existing SfM algorithms mainly rely on feature
matching, which is vulnerable in weak or repeated texture scenes, such
as in our case. Secondly, up-to-scale reconstruction cannot match the
real scale.

3.1 Implicit Reconstruction
Toward practical usage, our system is designed to replace the compli-
cated pre-process procedure with a noise sensor input, and reconstruct
the tooth model in an end-to-end manner. Apart from multi-view im-
ages, our system also takes rough poses and sparse depth as input to
assist the scale estimation. The rough poses can be obtained through
inertial sensors (IMU) or odometry of mobile devices. However, these
poses usually have a drift problem, resulting in inconsistent scales, thus
we also leverage the low-resolution depth map for initialization. As
shown in the bottom left of Figure 3, the depth points of multiple input
poses and depth are noisy and sparse, which is far from the accuracy
required for dental model reconstruction. To obtain the scale-consistent
and detail-preserved reconstruction results, we design a coarse-to-fine
reconstruction manner to optimize the camera pose T and neural im-
plicit representation, simultaneously.

Coarse-Level Reconstruction. In this part, we aim to quickly con-
struct the potential surface with real scale and correct the noisy poses
provided by the odometry. The coarse reconstruction part consists of
the following steps.

1) Real scale alignment. We first extract the predicted potential
tooth mask M for each input image, this step is done by the off-the-shelf
tool, rembg*, which is developed based on [37]. Based on the depth
inside the predicted mask, we can construct the initial coarse voxels Vc
with large voxel size. The scale of the voxels is aligned with the real
world.

2) Key-frames selection. To maintain a consistent scale during
the reconstruction process, we select several key-frames according
to certain overlap thresholds. Specifically, we take the first frame to
make up the world coordinate and fix its pose during reconstruction.
To establish enough co-visibility with a small number of images, we
borrow the concept of key-frames from SLAM methods [61], and select
the key-frames based on the mutual visibility of voxels.

3) Frame-wise pose optimization. For l-th iteration, if l < lkey,
we only optimize the rays sampled from key-frames and recover the
coarse scene with consistent scale as shown in top-middle of Figure 3.
After lkey iterations of key-frame optimization, we optimize the rays
from all frames but fix the pose of key-frames for another lall iterations

*https://github.com/danielgatis/rembg

to rectify the pose for all frames (Figure 3 top-right). As shown in
the bottom-right of Figure 3, after the coarse-level reconstruction, the
fused depth map is more aggregated, and some structural details have
emerged.

4) Rendering losses and optimization. To optimize the frame-
wise pose and neural network, we use volume rendering to obtain the
rendering results, then minimize the difference between the rendering
results and ground truth observations.

Here, we show the training losses used in our approach during the
reconstruction and registration modules. As shown in the Figure 2, we
take the interpolated embedding e and posed view direction d as input,
the per point SDF value σ and color c on each ray are computed by Fσ
and Fc. The accumulated color C(r) for each ray r is obtained through
Equation 3. So, the photometric loss between the rendered color, C(r),
and input color, Ĉ(r), from input image I is computed by Equation 6:

Lcolor = ∑
r
�Ĉ(r)−C(r)�1. (6)

However, photometric information is insufficient to represent the
characteristics of teeth. Therefore, we consider finding a more salient
feature that is suitable for our teeth model matching. As shown in
Figure 4, the edge pattern can be easily recognized regardless of the
domain, therefore we proposed to integrate the edge feature inside our
ImTooth representation during reconstruction.

Fig. 4. Example images of teeth in different domains and their corre-
sponding edge maps.

We extract the binary edge map E from image I and add a new
edge prediction branch Fp which predicts the probability of point p
appearing on the edge. The edge probability Pe(r) for each ray r is
also accumulated with Equation 3 and trained by a binary cross entropy
edge loss with ground truth P̂e(r) ∈ E according to Equation 7:

Ledge = ∑
r

BCE(P̂e(r),Pe(r)). (7)
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Apart from the appearance information, we also consider the geomet-
rical information to supervise the reconstruction process. To constrain
the scale with noise input depth, we leverage the full-depth supervision,
which splits the points p(t) along the ray r into three intervals accord-
ing to depth. For the points in front of the observed depth t < t̂ −δ t,
we consider these points to be outside the surface. The depth loss for
outside points is formulated as:

Loutside = ∑
t
�1−Φ(−s ·σp(t))�2, (8)

where s is the scale factor to control the truncated margin of SDF value,
δ t is a noise-tolerated depth range, and t̂ is the observed depth value
from the depth sensor of HoloLens 2.

For the points behind the observed depth t > t̂ + δ t, we consider
them to be inside the surface.

Linside = ∑
t
�Φ(−s ·σp(t))�2. (9)

For the points between the near range t̂ −δ t ≤ t ≤ t̂ +δ t, we directly
constrain their SDF values to be 0.

Lnear = ∑
t
�σp(t)�2. (10)

By combining the above three losses, the total depth loss is defined as:

L f ull depth = Loutside +Lnear +Linside. (11)

Additionally, to constrain the regulated field, we also leverage the
eikonal term [19].

Leikonal = ∑
t
(�∇σp(t)�2 −1)2. (12)

Finally, the total loss used for optimization at coarse-level recon-
struction is defined as follows:

Lcoarse = Lcolor +L f ull depth +Ledge +Leikonal . (13)

Fine-Level Reconstruction. After the coarse-level reconstruction, we
already get the coarse structure of the latent tooth model and exact
scaled camera poses. So, in this part, we aim to model the detailed
structure of the teeth model. The fine-level reconstruction part consists
of the following steps.

1) Coarse voxel splitting. Representing teeth models with a set
of coarse voxels prolongs the reconstruction process, and will lead to
overly-smoothed surface reconstruction due to the sparsely sampled
points. To reconstruct finer details, we periodically divide each exist-
ing voxel into eight sub-voxels and assign new embedded features via
interpolation. We use the embedding retrieval function Γ(·) to com-
pute the initial embeddings for newly generated voxel vertices. These
embeddings will be optimized together with the neural network.

2) Redundant voxel pruning. To preserve the sparse structure of
our method, when splitting a coarse-level voxel into eight fine-level
voxels, we need to remove some redundant voxels which do not contain
any surface. Since each voxel contains a continuous signed distance
field, we can prune the redundant voxels according to the SDF values.
We first uniformly sample 3D points inside each voxel, and the SDF
values of these points are obtained from the geometry extractor Fσ . We
use a predefined distance threshold, τ , to decide whether to retain or
prune the voxel. If the SDF values of all sampled 3D points in the voxel
satisfying |Fσ (Γ(p)) |< τ , we will prune the corresponding voxel from
V .

3) Fine tuning. During the fine-level reconstruction, we fine-tune
our model with the above-mentioned losses except L f ull depth. Since
the noise depth supervision could only learn a coarse geometrical
structure and is harmful in detail structure reconstruction. So, the total
loss used for fine-level reconstruction is shown in the following:

L f ine = Lcolor +Ledge +Leikonal . (14)

By periodically pruning the empty voxels and splitting the remaining
voxels, we get the fine voxels V f which can be used to extract a much
more delicate surface. For NeuS and many other coordinate-based
methods, they have to reconstruct them separately, but in our method,
we can reconstruct them together, and separate them later by moving
their supporting voxels around, as shown in Figure 5.

Original position Custom position

Tup

Tdown

Fig. 5. We can separate the supporting voxels of both arches, and
transform their coordinates with two different transformations Tup and
Tdown.

3.2 Pose Registration
Another critical component of successful dental AR applications is
pose registration, which aligns the reconstructed model to the real
teeth image for virtual-real fusion. Existing solutions either use the
intermediate features for matching or use a deep model for direct pose
regression. However, in our case, the teeth model does not contain
enough color information for feature extraction and matching, which
will decrease the performance of pose registration.

To handle this issue, we use the trained model in Sec 3.1 to render
edge and geometrical information for estimated pose optimization.
Specifically, given a query image Iq, and its initial pose, Tq ∈ SE(3),
we first sample a set of rays according to the estimated pose and obtain
the rendering results. Here, we fix the trained MLP model and voxel
embedding vectors in Sec 3.1 and send the view direction, d, and
interpolated embedding e of sampled points along the rays into the
trained model and render the probability edge map, Pe, and depth D(r).

Since our model is totally differentiable, the error between predicted
edge map Pe and extracted edge map E can also back-propagate to the
camera pose, which allows us to iteratively optimize the camera pose
during registration without additional training. However, in practice,
optimization purely depending on the edge is prone to a local minimum
due to the noise imposed by lighting conditions, camera blurring, or
other environmental problems. Thus, we also leverage the depth loss
Equation 15 for pose optimization. Unlike the full depth loss, the depth
used here is also the accumulated depth through Equation 3.

Ldepth = ∑
r
�D̂(r)−D(r)�1. (15)

So, the total loss used in pose registration is Equation 16, where β
controls the weight of two losses according to the quality of input depth
and edge.

Lreg = Ldepth +βLedge. (16)

3.3 Implementation Details
The detailed network architecture is shown in Figure 7. We set the
voxel embedding length to 16, and use a 3-layer MLP with 128 hidden
units as the geometry extractor Fσ . it takes ray direction and geometry
feature vector as input and outputs 3-dimensional RGB color. The
edge extractor Fp is a 2-layer MLP that takes the geometry feature
vector as input and outputs 1-dimensional edge probability. Here PE(·)
denotes the positional encoding [35]. We use 6 frequencies on ray
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Fig. 6. Surface reconstruction results. From left to right, we show the RGB image of the plaster model, scanned surface (ground truth), and the
surface reconstructed by the COLMAP [46,47], NeuS [58], Vox-Surf [27], our proposed ImTooth, respectively.
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128
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3

128

Fp
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128
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σ

16e
PE(4)

3d PE(6)

pe

c

Fig. 7. Detailed architectures of our neural network.

direction d and 4 frequencies on voxel embeddings e. However, we
found positional encoding could be harmful in the early stage. Inspired
by recent work [28], we adopt a weighted factor wk(l) for frequency
component according to iteration number l as shown in Equation 17
and Equation 18:

γk(e; l) = wk(l) · [cos(2kπe),sin(2kπe)], (17)

wk(l) =

⎧⎪⎪⎨
⎪⎪⎩

0 , i f l < k

1− cos((l − k)π)
2

, i f k ≤ l < k+1

1 , i f l ≥ k+1

(18)

We generate the initial octree using voxels of size 0.1 and set the
maximum number of voxel hits to 20. The initial ray marching step is
0.001 and decreases with the voxel size. We apply the voxel pruning
and splitting at 10,000, 20,000, 30,000, 50,000, and 100,000 iterations,
respectively, the pruning threshold τ = 0.01. We adopt the surface-
aware voxel resampling strategy [27] after 30,000 iterations. We set lkey
to 5,000 for scene initialization. For each iteration, we random sample
4,096 rays from select frames. The learning rate for the network and
embeddings is 0.001 and 0.00001 for the pose. For pose registration,
we set the β in Equation 16 to 0.01 to prevent optimization to a local
minimum in the early stage. All experiments are run on a single
NVIDIA V100 graphics card.

4 EXPERIMENTS

4.1 Dataset
The data used in all experiments are captured by a Microsoft HoloLens
2. The raw RGB image sequence is captured by PhotoVideo (PV)
camera in size 1920 × 1080. To maintain the real scale, we also record
the depth map in size 512 × 512 in Articulated HAnd Tracking (AHAT)

Table 1. Evaluation result of the reconstruction module. We report the
chamfer distance and parameters used for different methods.

Chamfer Dist. Net Param. Extra Param.

COLMAP 0.5160mm - -

NeuS
(pre-process)

0.3251mm 1.41M -

Vox-Surf
(pre-process)

0.3509mm 0.36M 0.50M
(8113 emb)

Ours
(w/o pre-process)

0.3926mm 0.42M 0.46M
(7545 emb)

mode and directly project to the PV frame. We also save the raw poses
estimated by HoloLens 2 for initialization.

We first collect a pair of plaster tooth casts from a volunteer and
also the corresponding scanned model generated by iTero scanner †

as ground truth. We then record three datasets for evaluation of our
system: OnTable, OnHand, and Real. The OnTable dataset is used for
reconstruction, and we place the upper and lower teeth model on the
table. The OnHand dataset is used for the evaluation of registration,
and we place the lower teeth model on hand and move it freely. The
Real dataset is a set of images captured from the real mouth of the
volunteer for real-world testing.

4.2 Evaluation of Surface Reconstruction
In this part, we evaluate the performance of the proposed surface recon-
struction module. The compared baseline methods, evaluation metrics,
and results of this part are shown in the following.

Baseline and Metrics. We compare our method with the traditional
reconstruction method, COLMAP [46, 47], and the recent implicit
surface reconstruction method, NeuS [58], Vox-Surf [27]. We show
the reconstruction error of the point clouds between the reconstructed
result and ground truth model and also the number of used parameters
of the neural network and additional embedding vectors. For NeuS
and Vox-Surf, we use preprocessed poses following the procedure in
NeuS, which is complex and requires human assistance. Instead, our
method directly uses the raw poses collected by HoloLens 2 as input
and continuously optimizes the raw poses during the reconstruction.

The metric used for the evaluation of the reconstruction quality is
shown in the following equation:

Drecon =
1
|P| ∑

(p,q)∈ΛP,Q

�p−q�2,

ΛP,Q = {(p,argminq�p−q�)},
(19)

where p ∈ P and q ∈ Q are two sets of points sampled from the recon-
structed and ground truth meshes.

†https://itero.com
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Fig. 8. Projection results for iterative pose optimization. As shown in the figure, as the number of iterations increases, the reconstructed model is
gradually aligned with the model of the image, and the edges coincided.

Table 2. Runtime performance of different steps in our proposed method.

per iter ray intersection ray sample emb sdf norm edge render backward full

time (ms) 2.149 1.121 0.741 1.528 7.032 0.558 1.016 24.815 41.767

Qualitative and Quantitative Results. The overall quantitative results
are shown in Table 1. Even though we do not use the ground truth pose
data for reconstruction, we also can achieve comparable performance
with two recent implicit reconstruction approaches. The small gap is
mainly due to the surface defects in some under-observed areas caused
by the early depth noise. For the parameters (both neural network and
extra features) comparison, our requirement is much lower than NeuS
(0.88M vs. 1.41M), which indicates that we can apply the model on
the mobile device with a faster inference speed. We also show the
qualitative reconstruction results in Figure 6. As shown in the figure,
our proposed ImTooth is able to reconstruct surfaces comparable to
other methods without accurate pose and outperforms the traditional
method like COLMAP.

4.3 Evaluation of Pose Registration

In this part, we evaluate the performance of our proposed pose regis-
tration module. The compared baseline methods, evaluation metrics,
and results of this part are shown in the following. We use the OnHand
dataset for evaluating the registration. The GT poses are obtained by
reconstructing the OnHand dataset. During reconstruction, we mask out
the background to eliminate the inconsistency caused by hand moving.

Baseline and Metrics. We compare our method with the visual local-
ization method HLoc [44], which estimates the camera pose by global
image retrieval and local feature matching. HLoc combines a state-of-
the-art learning-based keypoint descriptor SuperPoint [14], and feature
matcher SuperGlue [45]. Besides, we also compare the iterative closest
point (ICP) [4] approach, which uses depth from HoloLens 2 and re-
constructed models for pose optimization. To verify the effectiveness
of our optimization loss in Sec 3.2, we show both the performance of
only using depth and using both depth and edge information. For the
evaluation metrics, we follow the setting in [44], which estimates the
errors of the position and orientation values between the predicted and
ground truth data.

Table 3. Evaluation results of the registration module. We report the
recall [%] at different distance and orientation thresholds.

dist. [cm] 2.5 / 5.0 / 7.5
ori. [deg] 5 / 10 / 15

HLoc (SP+SG) [14, 44, 45] 5.88 / 12.94 / 17.65
ICP [4] 17.64 / 38.82 / 51.76

Ours (Depth) 76.47 / 84.70 / 92.94
Ours (Edge + Depth) 80.00 / 90.58 / 96.47

Qualitative and Quantitative Results. To validate the effectiveness
of our proposed method, we perform per-frame pose estimation with
the query images captured by a HoloLens 2. The query images are
captured at different locations and viewpoints. We manually initialize
the pose by finding an approximate transformation and add a random
noise within [-5, 5] (cm) translation and [-5, 5] (deg) rotation in three
directions.

In order to measure the localization accuracy of the proposed method,
we use the commonly used relative translation error (Equation 20) and
relative rotation error (Equation 21):

MRT E = |t − t̂|, (20)

MRRE = arccos((trace(RT R̂)−1)/2), (21)

where t̂ and R̂ are the ground-truth translation and rotation, respectively,
and t and R are the estimated ones. For the ground-truth pose, we first
estimate the pose through the structure-from-motion algorithm, and
then scale the pose according to the actual scanning model.

Fig. 9. Translation (mm.) and rotation (deg.) errors of different methods.
We show the error of ICP and the proposed method with different settings.
For better visualization, we zoom in on some curve results inside the
blue box.

The pose recalls at different translation and orientation thresholds are
shown in Table 3. As shown in the table, our approach achieves the best
results for different thresholds. The feature-based visual localization
methods can not achieve good performance on our data due to the
textureless region of the teeth model. As shown in the last two rows in
the table, combining two kinds of geometrical information (depth and
edge) can lead to the best registration performance. Additionally, we
show translation and rotation errors for different test frames taken from
different viewpoints in Figure 9. To get a better view of the curve, we
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Fig. 10. The full process of dental brackets guidance system based on ImTooth. The whole application is divided into four modules. The reconstruction
module is used to reconstruct the tooth model based on neural implicit representation, the bracket placement module is used to determine the
position of the bracket on the reconstructed model, the registration module is used to align the actual tooth image with the reconstructed model, the
augmented reality module performs virtual-real fusion display according to the estimated position.

Fig. 11. Failure case of HLoc feature matching. The red (green) lines
represent the outliers (inliers) matching between feature points between
different images. As we can see, feature-based methods can be fragile
in such textureless objects, even the ”inliers” are still mismatched.

zoom in on the graph of the first 20 frames sorted by error. It can be
seen from the figure that our Imtooth can achieve very good registration
results (translation error is less than 2mm, rotation error is less than 5
degrees), which is sufficient to meet medical needs. However, due to
the fixed-focus camera and low-resolution depth camera in consumer-
grade AR glasses, there will be blurring in the short distance, and the
depth in the long distance is not reliable, resulting in poor registration
accuracy for other viewing angles.

Also, we give the visualization results of the iterative pose optimiza-
tion process in Figure 8. We overlay the reconstructed teeth model and
edge map on the original RGB and edge images with the estimated pose
from different optimization iterations. It can be seen from the figure
that with gradual optimization, the estimated pose gradually reaches
the result of ground truth.

Additionally, we show some failed feature matching visualization
results for HLoc (SuperPoint + SuperGlue) in Figure 11. According
to the feature point matching results, we can know that due to the tex-
tureless structure, feature-based methods may produce very unreliable
results, leading to the failure of registration. Although our method
achieves good performance using geometry-informed optimization, it

fails when the overlap between the initial and actual position is too
small, as it may get stuck in a locally optimal solution. Therefore, our
method is more suitable for local pose adjustment during tracking.

We also report the runtime cost for each part during registration as
shown in Table 2. Each optimization iteration takes 40 ms, and we
optimize each scene with 100 iterations. In practice, we find that with
a good initialization position, the iteration number can be decreased.

5 POTENTIAL APPLICATIONS

We develop a teeth bracket guidance system based on our ImTooth
system. The full process is shown in Figure 10. We divide the full
system into four modules. We will elaborate on the specific steps of
each module below:

Reconstruction Module The goal of this module is to obtain a
reconstructed neural implicit model. First, we need to obtain a plaster
model of the patient’s teeth, which is usually a routine procedure in
dental clinics. We then use AR glasses to capture multi-view images
of plaster casts and run the automatic scale-preserving reconstruction
algorithm proposed in subsection 3.1. After this step, a set of embedded
voxels and a corresponding extractor are generated, which is the core
part of our system.

Bracket Placement Module This module is used to predetermine
the placement position on the reconstructed model of the bracket, which
is usually based on the reconstructed model of CBCT. We first extract
approximate tooth regions from CBCT. Since the CT model has a clear
root and crown structure, the position of the long axis of the tooth can be
estimated more accurately, and the bracket position can be determined
accordingly. Since the scale of our model is consistent with the CT
model, the bracket position can be easily transformed into the ImTooth
model coordinate system by global alignment.

Registration Module This module is used to estimate the relative
pose of the reconstructed model and the real teeth in the current view.
For actual patients, we first find candidate tooth regions, which can be
done by template matching or some off-the-shelf facial key point detec-

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 21,2024 at 12:43:49 UTC from IEEE Xplore.  Restrictions apply. 



2845LI ET AL.: IMTOOTH: NEURAL IMPLICIT TOOTH fOR DENTAL AUGMENTED REALITY

tion methods. Then, we generate edge maps and segmentation masks
[37] through edge detection and background removal. As described in
subsection 4.3, the initial pose is important to our method. Therefore,
we design an interactive coarse position initialization method. Through
the gesture interaction of HoloLens 2, Doctors can manually place a
virtual teeth model near the patient’s teeth to bootstrap the registration
algorithm. After initialization, our algorithm will use the geometry and
pre-learned edge information to iteratively optimize the relative pose
so that the reconstructed tooth can fit the actual tooth area. It is worth
noticing that the initialization can also be done automatically using
the depth alignment method, However, this can be less stable due to
insufficient viewing area.

Augmented Reality Module This module mainly performs a virtual-
real fusion display on the AR glasses according to the position of the
bracket preset in the previous steps and the final optimized pose and
assists the doctor in the treatment. Since AR glasses usually have
their own SLAM module, the number of iterative optimizations can be
reduced by merging with the real-time pose estimated by the glasses.

5.1 Implementation Details
The system uses HoloLens 2 as data acquisition, display, and interac-
tion equipment. We first run the reconstruction procedure in offline
mode and store the reconstructed model in AR glasses for interactive
virtual bracket placement. The registration steps are completed on a
computing server with a single NVIDIA RTX 2080Ti graphics card
and transmitted the optimized pose to the glasses through the wire-
less network. Although the optimization cannot run in real-time, with
the real-time pose estimated by HoloLens 2, we adopt a delayed opti-
mization strategy that performs the optimization for every n frame to
compensate for the drift from HoloLens 2’s pose. This strategy allows
us to minimize optimization steps in practical applications.

6 LIMITATION AND FUTURE WORKS

Currently, our method still has some limitations in practical use. Firstly,
for real-world applications, the texture is prone to be affected by the
environment, the shadow or overexposure could affect the accuracy
of edge extraction, which directly affects the pose estimation result.
For this problem, a more robust edge detection method, especially for
teeth, would be helpful for registration. Secondly, the initial position
is important for getting good pose optimization. However, identifying
the teeth from occluded images is challenging. We believe that a
descriptor for teeth is a good choice for precise localization without
human interaction. Thirdly, our system still has yet to achieve true real-
time performance (∼ 30 Hz). We will further improve and optimize
our method for better performance.

7 CONCLUSION

In this work, we propose a novel dental AR system named ImTooth. Our
system leverages neural implicit representation techniques for modeling
and tracking. Our system greatly simplifies the current AR process
and does not require additional high-precision scanners, significantly
reducing the overall cost. Our system can easily be integrated into the
dental diagnosis and treatment process, and provide better assistance to
dentists.
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