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DTR-Net: Dual-Space 3D Tooth Model
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Abstract—In digital dentistry, cone-beam computed
tomography (CBCT) can provide complete 3D tooth models,
yet suffers from a long concern of requiring excessive
radiation dose and higher expense. Therefore, 3D tooth
model reconstruction from 2D panoramic X-ray image is
more cost-effective, and has attracted great interest in
clinical applications. In this paper, we propose a novel
dual-space framework, hamely DTR-Net, to reconstruct 3D
tooth model from 2D panoramic X-ray images in both image
and geometric spaces. Specifically, in the image space,
we apply a 2D-to-3D generative model to recover intensities
of CBCT image, guided by a task-oriented tooth segmenta-
tion network in a collaborative training manner. Meanwhile,
in the geometric space, we benefit from an implicit function
network in the continuous space, learning using points to
capture complicated tooth shapes with geometric proper-
ties. Experimental results demonstrate that our proposed
DTR-Net achieves state-of-the-art performance both quanti-
tatively and qualitatively in 3D tooth model reconstruction,
indicating its potential application in dental practice.

Index Terms—Tooth model reconstruction, panoramic
X-ray image, CBCT image, task-oriented segmentation,
implicit function.
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[. INTRODUCTION

N DIGITAL dentistry, acquiring complete tooth models

with both tooth crown and tooth root is a fundamental step
in dental diagnosis and treatment planning [1], [2], [3], [4].
For instance, in orthodontic treatment, tooth movement path
design requires ensuring no collision between neighboring
teeth during the process. Panoramic X-ray and cone-beam
computed tomography (CBCT) images are the two important
dental imaging modalities in clinical practice, respectively
providing the 2D projection and 3D volumetric data of the
oral cavity. However, due to the high radiation levels and
costs associated with CBCT devices, acquiring complete tooth
models for orthodontic treatment can be relatively expensive
and potentially harmful, making it unaffordable in many dental
clinics [5]. Therefore, reconstructing a complete 3D tooth
model from 2D panoramic X-ray image is more acceptable
and of great interest.

Nevertheless, 3D tooth model reconstruction from 2D
panoramic X-ray images is quite challenging for two reasons.
First, it is highly time-consuming and excessively radioactive
to obtain paired CBCT and panoramic X-ray images from the
same patient in daily dental clinics, which brings difficulty
in building paired 2D and 3D data for network learning.
Second, the oral cavity is extremely complicated and consists
of various tissues [6], including alveolar bone and different
types of teeth with similar intensity distributions. Moreover,
caused by projection and distortion during the scanning,
the captured panoramic X-ray images suffer from severe
ambiguity in the overlapping areas to separate neighboring
tissues (e.g., adjacent teeth), and also the loss of dimension
to faithfully recover the actual 3D space. Thus, restoring
3D shapes of each tooth from such 2D images is extremely
difficult.

To address these challenges, many previous works [7],
[8], [9] exploit handcrafted geometric features for 3D tooth
reconstruction from panoramic X-ray images. However, these
methods are typically built on the pre-defined tooth tem-
plates, and thus lack diversity to generate patient-specific
tooth models. Recently, with the advance of deep learning,
many learning-based methods [10], [11], employing convo-
lutional neural networks (CNNs), have been proposed for
3D tooth or oral cavity reconstruction from panoramic X-
ray images. These methods provide feasible strategies to
generate CBCT images, followed by a tooth segmenta-
tion module to reconstruct the 3D tooth model from 2D
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Fig. 1. Overview of our proposed DTR-Net, a dual-space framework to
reconstruct 3D tooth models from panoramic X-ray images. In the image
space, we leverage a 2D-to-3D generative model to learn intensities of
CBCT image, especially on the tooth regions obtained simultaneously
by a segmentation task. In the geometric space, we design an implicit
function network in the continuous space to capture complicated tooth
shapes with fine-grained details.

panoramic X-ray images. Unfortunately, these methods focus
only on tooth reconstruction in the image space (i.e., CBCT
image and tooth mask), entirely ignoring geometric proper-
ties even crucial to recover fine-grained details of 3D tooth
models.

In this paper, we propose a novel dual-space framework,
namely DTR-Net, for 3D tooth reconstruction from the 2D
panoramic X-ray image. The core of our method is to recon-
struct 3D tooth models in dual spaces, including 1) image
space (i.e., CBCT and tooth mask) and 2) geometric space
(i.e., implicit surface function representation). In the image
space, we exploit a 2D-to-3D generative model to recover
a 3D CBCT image from an input panoramic X-ray image.
In particular, to reduce the impact of other tissues with
similar intensity values (e.g., neighboring teeth or alveolar
bone) during the generation process, we further leverage a
tooth segmentation module to guide more attention to the
foreground tooth area. In this way, the 3D tooth model can
be reconstructed from the segmentation mask accordingly.
However, geometric properties are not considered in the image
space, despite their importance in producing fine-grained tooth
shape details. Hence, we further introduce an implicit function
network to recover 3D tooth models in the geometric space.
Note that it is a coordinate network defined in a continuous
space where a large number of query points are sampled to
determine surface occupancy (i.e., inside and outside), thus
being able faithfully to represent tooth shapes at arbitrary reso-
lutions. Eventually, we merge dual-space outputs and generate
final 3D tooth models with detailed geometric properties. Our
main contributions are summarized below:

« We propose a novel dual-space framework to reconstruct
a 3D tooth model from the 2D panoramic X-ray image
in the image space and the geometric space, respectively.

« In the image space, we leverage a 2D-to-3D generative
model to predict intensities of the 3D CBCT image,
which is further enhanced by a segmentation module to
focus on the foreground tooth region. In the geometric
space, an implicit function network is introduced in the

continuous space to capture complicated tooth shapes
with fine-grained details.

« Extensive experiments and ablation studies show that our
proposed framework can generate accurate 3D tooth mod-
els from 2D panoramic X-ray images. Compared with
state-of-the-art methods, our method can achieve superior
results both qualitatively and quantitatively, demonstrat-
ing effectiveness of our proposed dual-space framework.

[l. RELATED WORK
A. 3D Tooth Segmentation and Generation

3D tooth model reconstruction from dental imaging
(e.g., intra-oral scanning data, CBCT images, and
panoramic X-ray images) is fundamental in digital
dentistry, especially for orthodontic treatments. Existing
approaches [12], [13], [14], [15] have achieved promising
results in tooth instance segmentation on intra-oral scanning
data or CBCT image. Typically, traditional methods usually
apply region growing, level-set algorithms, or their variants
to extract tooth models [16], [17], [18], [19], [20]. With
the development of computer vision techniques, many
learning-based methods have been proposed to surpass
these traditional methods with better effectiveness and
efficiency [4], [14], [15], [21], [22]. However, the intra-oral
scanning data only contains tooth crowns without any root
information, and CBCT image is not affordable in many
dental clinics due to massive radiation and high cost.

Instead of segmenting individual teeth from the intra-oral
scanning data or CBCT image, Laura et al. [7] propose to
reconstruct 3D tooth models only from 2D panoramic X-ray
image with B-spline interpolation and free-form surface. Fur-
ther, inspired by the generative model in computer vision,
Song et al. [10] propose to exploit a generative model to
reconstruct 3D flattened images from a panoramic X-ray
image, which is further deformed into a reconstructed CBCT
image with a predicted dental arch curve. Unfortunately, this
method can only recover intensities of the 3D CBCT image,
whereas the 3D tooth model is not considered. Recently,
Liang et al. [11] adopt a two-stage framework to first localize
each tooth in a panoramic X-ray image, and then directly
reconstruct 3D tooth models from respective X-ray patches.
Although it is a feasible strategy for individual tooth model
reconstruction, it is difficult to directly obtain 3D tooth models
from 2D X-ray images, which also often produce artifacts
around tooth models. Moreover, this method utilizes only
image-level supervision to generate 3D tooth models, where
many important tooth shape properties and details (e.g., tooth
root number) are usually inaccurate. To effectively reconstruct
3D tooth models, we design to utilize the image space (i.e.,
intensity and segmentation masks) and geometry space (i.e.,
implicit surface function representation) as dual-space super-
vision in our framework.

B. 3D Reconstruction From 2D Input

In the computer vision and graphics community, 3D
reconstruction from 2D inputs usually aims to restore 3D
information (e.g., 3D image intensities or 3D shapes) from the
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2D representation of the target. These tasks can be generally
concluded as two categories based on the number of 2D
views, i.e., 1) multi-view reconstruction and 2) single-view
reconstruction.

For multi-view reconstruction, given a dense sampling of
views, the typical methods [23], [24] design to reconstruct
the scene with these sampled views through camera pose
estimation in a unified coordinate system. Further, many
works [25], [26] are proposed to synthesize a 3D target by
optimizing a continuous implicit function with 2D views from
different angles. Furthermore, in medical imaging applications,
Liu et al. [27] propose a multi-view learning for disease diag-
nosis. Kasten et al. [28] propose a 2D-to-3D convolutional
neural network to reconstruct the 3D knee bone from bi-
planar X-ray images. Although these methods have been
proven effective in different tasks, taking multi-view images
as input is impossible in our specific task, since the panoramic
X-ray image used in dental clinics is only a single-view 2D
projection captured with a moving camera.

Recently, many works have been explored to reconstruct
3D images or shapes from a single-view image. For example,
Henzler et al. [29] utilize a convolutional neural network to
extend a single 2D image to a 3D image. Shen et al. [30]
propose a deep learning algorithm to map a single-view radio-
graph to a corresponding 3D image. SCSCN [31] leverages a
separated channel-spatial convolutional network to reconstruct
3D shape from a 2D image at any viewpoint. However, these
methods are designed only to consider voxel-wise supervision
in the image space (e.g., intensity distribution or segmentation
masks), while ignoring geometric attributes of the target
(e.g., shapes), which usually leads to many artifacts in the
reconstructed results.

[1l. METHOD

This section presents a novel dual-space framework for
3D tooth model reconstruction from 2D panoramic X-ray
images. An overview of our framework is shown in Fig. 3.
We first briefly introduce the paired X-ray and CBCT data
building, and then carefully explain the respective details of
our dual-space architecture designed in the image space and
the geometric space.

A. Data Building

Our goal is to obtain 3D tooth models accurately from
a 2D panoramic X-ray image. We formulate this task as a
tooth model reconstruction problem in the image space (i.e.,
CBCT image and 3D tooth masks) and the geometric space
(i.e., tooth surface). To build this framework, we need paired
panoramic X-ray images and CBCT images for supervised
learning. However, the paired data with both CBCT and
panoramic X-ray images is often unavailable in dental clinics,
as collecting both data is time-consuming and also excessively
radioactive. To this end, we alternatively design to synthesize
pairwise X-ray images from CBCT images for the purpose of
network learning.

In a typical panoramic X-ray imaging setup, a rotating
arm holds both the X-ray source and the receptor. As the

Curve Estimation
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CBCT scan Segmentation Parallel curves

Image synthesis

X-ray patch

Panoramic X-ray image

Multi-planar image set

Fig. 2. Overview of panoramic X-ray patch generation. We first estimate
the oral curve (i.e., red curve) and its two corresponding parallel curves
(i.e., two blue curves) of the dental arch on the CBCT image. Afterward,
we unwarp the image slices between the parallel curves to generate
a multi-planar image set. Furthermore, we synthesize the pairwise
2D panoramic X-ray image by applying the ray-sum algorithm to the
multi-planar image set. Moreover, the pairwise CBCT image patch and
the X-ray image patch for each tooth can be cropped using the tooth
center and the normal vector that is perpendicular to the oral curve.

arm rotates, the X-ray beam focuses on a narrow area,
capturing a continuous projected image of the dental arch.
Leveraging this principle, we first identify the dental arch
curve on CBCT images and project the CBCT image to
generate multi-planar images based on the computed arch
curve. Finally, we employ the ray-sum algorithm to simulate
paired panoramic X-ray images. This simulation algorithm,
widely utilized in panoramic X-ray image generation from
CBCT images, has been extensively discussed in prior studies
[10], [11], [32].

Specifically, we first collect a set of CBCT scans X =
{X1, X2, ..., Xy} in the dental clinics and annotate the cor-
responding 3D tooth masks ¥ = {Y1, Ys,..., Yn}, where N
denotes the total number of CBCT scans. Each voxel at a
CBCT image X; € R7*WxD hag an intensity value, and its
corresponding location in the label map ¥; € R7>*W>xD owns a
value indicating property of belonging to tooth or background.
Then, as shown in Fig. 2, to synthesize the pairwise 2D
panoramic X-ray images, we first estimate the parallel oral
curves by applying the thinning algorithm [33] and also cubic
spline interpolation on mandible segmentation. In Fig. 2, the
red curve denotes the estimated oral curve, while two blue
curves denote two parallel oral curves covering the whole tooth
region. After estimating oral curves, we unwarp image slices
between parallel oral curves to generate a multi-planar image
set. Finally, we synthesize the pairwise 2D panoramic X-ray
image by applying the ray-sum algorithm onto the multi-planar
image set [32]. Notably, we can also generate the pairwise
CBCT patch (i.e., image patch x! and mask patch y! for the
t-th tooth of the i-th patient) and X-ray image patch (i.e., z§
for the t-th tooth of i-th patient).

B. Tooth Reconstruction in the Image Space

Taking a 2D panoramic X-ray image, we first detect each
tooth, and feed the cropped X-ray image patch into the
network. To predict the 3D tooth model from a 2D X-ray
image patch, the most intuitive way is to reconstruct the
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Fig. 3. Overview of DTR-Net. We design a dual-space framework to reconstruct a 3D tooth model from a 2D panoramic X-ray image. In the image
space, we utilize the auto-encoder with a discriminator to generate corresponding CBCT image patches from 2D X-ray image patches, enhanced by
a task-oriented segmentation module (for obtaining the tooth mask) to focus on the foreground tooth area. While, in the geometry space, we design
an implicit function network to predict the occupancy of the query points (i.e., outside or inside the tooth model) around the tooth surface within the
corresponding CBCT image patch. Eventually, we obtain a 3D tooth model by integrating the results from dual spaces, which are placed in their

corresponding positions by the paired intra-oral scanned data.

corresponding 3D CBCT image patch, and then perform
the tooth segmentation. By following this idea, we design
three modules in the image space, including 1) a 2D-to-3D
generator, 2) a discriminator, and 3) a tooth segmentation
module. Nevertheless, our method differs from previous works
since our proposed segmentation module is task-oriented,
i.e., differentiable to the 2D-to-3D generation process, where
the foreground teeth in each patch can be generated more
accurately.

1) Generator: Since each pixel of the 2D X-ray image is
represented as the accumulation of the CBCT voxels along
the ray direction, we first apply a 2D-to-3D auto-encoder in
our framework to learn the inverse mapping G, expecting to
recover 3D image intensities (i.e., a CBCT image patch) with
the input of a 2D X-ray image patch, as defined below:

G(Z) . thw — thwxd’

(D

where z denotes a 2D X-ray image patch, and %, w, d refers
to three dimension of the cropped patch size. The network is
composed of a 2D encoder and a 3D decoder, with a feature
transformation module to bridge them. Details of the generator
architecture can be found in IV-C. To train the generator,
an objective function Lg (X, x) of mean square error (MSE) is
used to measure the error between the generated CBCT image
patch X/ and the ground truth CBCT image patch x;.

2) Discriminator: As the CBCT image reconstruction with
voxel-wise supervision (i.e., using MSE) usually leads to
over-smooth results with less high-frequency information,

especially in the tooth boundary areas, we further adopt a
commonly-used image-level discriminator to obtain a more
realistic intensity distribution for the generated CBCT image,
particularly in local tooth regions:

D(x) : RPWX s 0, 175575

@

where x is the predicted CBCT image patch or the cropped
CBCT image patch, and s is the downsampling factor. Each
voxel in ';1 x 2 x % indicates whether the input is a real
CBCT image patch or a generated CBCT image patch. During
the network training, the generator and the discriminator are
updated accordingly based on the minimax loss Lp(x, x).

3) Task-Oriented Tooth Segmentation: With the recon-
structed CBCT image patch, we first utilize a segmentation
network [34], which is pre-trained on real CBCT image
patches to obtain tooth masks:

S(x) . thwxd — [0, 1]hxwxd.

3

The output of the segmentation network is a probability map
y, with values ranging from O to 1, indicating the probability
of belonging to the background or the target tooth. To train
the segmentation network, we employ the objective function
by combining the cross-entropy loss and the Dice based loss.

Although it is feasible to generate 3D tooth masks from 2D
panoramic X-ray image patches with the 2D-to-3D generative
network and the pretrained segmentation network, the intensity
distribution gap between the generated CBCT image patches
and the real CBCT image patches is ignored. This could lead
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to unsatisfactory segmentation results for 3D tooth model
reconstruction, especially at tooth boundaries with blurred
signals or at the molars with significant shape variations.
Recently, many works, especially in the medical imaging com-
munity, leverage one highly-related task to guide the targeted
task, such as integrating segmentation task into classification
or registration task [35], [36]. Inspired by this, instead of
simply fixing the parameters of the pretrained segmentation
network, we further train the 2D-to-3D generative network
and the segmentation network in a collaborative way, where
the segmentation network is trained by both generated and real
CBCT image patches.

Moreover, to further guide the generator to pay more
attention to the foreground tooth regions, we update the opti-
mization strategy for the CBCT image reconstruction process.
Specifically, the generator G and the discriminator D are first
optimized with the initial objective functions Lg and Lp in
the first 50 epochs. For the rest epochs, with the probability
map y predicted by the segmentation network, we transfer it as
a weighted map to supervise the generator, as defined below:

Lo(X,x)=LiE,x)-Op-Y+2p-(1=3), 4

where L (%, x) refers to the updated loss function L (%, x)
or /Ji,()?, x). And we set Ay = 0.7 for the foreground voxels,
and Ap = 0.3 for the background voxels, respectively.

C. Tooth Reconstruction in the Geometric Space

Although tooth reconstruction in the image space can
recover the intensity distribution of the CBCT image and
segment foreground teeth, many geometric properties of the
tooth shape are not considered, especially at the tooth roots
with large variation. To address this problem, we adopt an
implicit function network to further represent and reconstruct
each tooth model in the geometric space. The network is
defined in a continuous field, such as the signed distance
function or occupancy field, which can represent each tooth
surface concisely at arbitrary spatial resolutions, and faithfully
capture the fine-grained geometric properties. Note that, the
tooth surface is subsequently reconstructed from the seg-
mented tooth mask using the widely-used Marching-Cube
algorithm. The details of the implicit function network for
tooth reconstruction are given below, including 1) multi-scale
and long-range encoding, 2) point-wise occupancy decoding,
and 3) confidence-aware dual-space integration.

1) Multi-Scale and Long-Range Feature Encoding: Generally,
in the implicit function network, given a CBCT image patch
x!, we sample a number of query points P in the 3D space
within x/. We aim to predict the occupancy (31’. e [0, 1] of
the query points, i.e., outside or inside the 3D tooth surface.
To obtain representative query points in the 3D space, we first
randomly sample 107 points on the tooth surface, and move
these points with random displacements based on Gaussian
distribution. In this manner, these sampled points can cover
the whole space of the CBCT image patch. More importantly,
most of these query points are located around the tooth surface
for effectively representing the complicated tooth shapes.

After sampling these query points, the next step is to obtain
point-wise deep features and predict the tooth occupancy

field. We design a point-wise encoding based on the 2D-to-
3D generator, which produces multi-scale feature maps for
point-wise querying in different dimensions, i.e., 2D for the
encoder, and 3D for the decoder. Specifically, as shown in
Fig. 3, for each 3D query point p, we get its features on the
2D and 3D multi-scale feature maps, respectively. The feature
of point p on a 3D feature map can be easily interpolated
according to Euclidean distances on neighboring grids. For the
2D feature maps, we first project the 3D query point p onto
2D space along the X-ray direction, and then employ the same
feature interpolation in the 2D space. Finally, we concatenate
these feature vectors together as the final feature vector F), of
point p.

We further notice that the point-wise features are queried
entirely from the convolutional feature maps. However, the
fixed-size convolutional kernel and the limited receptive field
usually inhibit the network’s ability to capture long-term
dependencies [37], [38], particularly when these dependencies
are distantly located. On the other hand, self-attention is
inherently better at capturing these long-term dependencies,
making them particularly suited for the global tooth shape
information in our task. Accordingly, we design a respective
method to capture both global and local tooth information.
Specifically, given the input 2D or 3D feature map before
the point-wise feature querying, we first apply three fully
connected layers to obtain the query features, key features, and
value features, respectively. We then compute the correlation
matrix between the query features and key features, effectively
modeling spatial and channel-wise relationships across the
feature map irrespective of distance. Finally, the value features
are reweighted by this correlation matrix and added to the
original feature maps to generate the final feature maps. In this
way, the concatenated point-wise features would thus include
both global and local tooth information, and contribute to more
reliable occupancy results.

2) Point-Wise Occupancy Decoding: To predict the occu-
pancy of a query point p with its feature vector F,, we employ
a multi-layer perceptron (MLP) that takes ¥, as input, and
conduct a binary classification to indicate whether the point is
outside or inside the tooth surface, as defined below:

MLP(F,) : R¢ - [0, 1], )

where C is the length of the concatenated feature vector, 0 and
1 indicate outside and inside, respectively. To train the implicit
function network, we use the cross entropy loss LypLp(0, 0)
to measure error between the predicted occupancy o and the
ground-truth occupancy o.

3) Confidence-Aware Dual-Space Integration: In the con-
tinuous geometric space, the learned implicit function can
predict accurate point-wise occupancy 6f. to represent detailed
tooth shapes. Along with the voxel-wise tooth segmentation
in the image space, the overall framework can provide more
reliable results by integrating the dual spaces. Specifically,
our proposed segmentation module outputs a probability map
f}f, indicating the probability of each voxel belonging to the
foreground tooth. However, due to complicated tooth shapes
and limited intensity contrast of reconstructed CBCT images,
the regions near tooth boundaries usually have uncertain

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 21,2024 at 12:25:01 UTC from |IEEE Xplore. Restrictions apply.



522

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 43, NO. 1, JANUARY 2024

segmentations. To eventually utilize the results from both
image space and geometric space, we integrate the seg-
mentation probability map and the occupancy classification
probability. Specifically, integration of predictions from these
two spaces is only carried out during the inference stage. This
is achieved by calculating the confidence score (represented
by the entropy) for each voxel’s prediction, defined as:

i (h, w,d) if Hy(h,w,d) < H,(h, w,d
Fhw,dy < | 10D i Hyhow, d) < Hoh, w,d)
0[(h9 w,d) lf Hy(ha w5d) 2 H()(h7 w’d)’

(6)

where H,(h,w,d) represents the entropy at position

(h,w,d) (i.e., the entropy of occupancy is H,(h, w,d) =
—0!(h, w,d) - Ind}(h, w,d) and the entropy of segmentation
is Hy(h,w,d) = —y/(h, w,d) - Iny/(h, w,d)). Note that a
prediction with lower entropy is indicative of higher confi-
dence. Consequently, this prediction with higher confidence is
selected as the final prediction f for each specific voxel.

To place the individual tooth models into the accurate
dental cavity position, we employ intra-oral scanning data as
guidance. Since the tooth crowns in our reconstructed tooth
model and the intra-oral scanning data should be identical,
as they are obtained from the same patient, we employ a rigid
registration algorithm such as Iterative Closest Point (ICP) to
integrate the 3D tooth model with the corresponding intra-oral
scan. This process aligns the tooth model to the intra-oral scan
by minimizing the distance between corresponding points, thus
ensuring precise matching within the 3D dental cavity model.

D. Overall Objective Function

The overall objective function for our proposed DTR-Net is
defined as

L =igLg + ApLp + AMLPLMLP + AsLs, (7N

where Ag, Ap, AmLp, and Ag are the hyperparameters to
balance different modules during the network training.

V. EXPERIMENTS

In this section, we first introduce how we build our dataset,
i.e., the paired X-ray image patches and CBCT image patches.
We then present the metrics that quantitatively measure the
performance in both image space and geometric space. Finally,
we provide implementation details for training our framework,
and also the pipeline to reconstruct 3D tooth model from a 2D
panoramic X-ray image in the inference stage.

A. Dataset

To train the network, we first collect 40 CBCT scans with
the spacing of 0.16 x 0.16 x 0.16 from a dental clinic,
where 70% is used for training, 10% for validation, and
20% for testing. These CBCT images are collected from
Shanghai NinthPeople’s Hospital. The dataset is approved
by the ResearchEthics Committee, and the reference number
is SHOH-2021-T169-1. Most of these patients were seeking
orthodontic and implant treatments, indicating that there are
teeth crowding, missing, and misalignment problems in this

dataset. As for age information, they range from 11 to 57 years
old. Moreover, as described in Fig. 2, since there are no
paired 2D panoramic X-ray images in dental clinics, we utilize
real-world CBCT images to synthesize paired X-ray image
patches and CBCT image patches for each tooth. In this way,
we produce 900 tooth-wise pairs of 2D panoramic X-ray image
patches (with a size of 96 x 128) and CBCT image patches
(with a size of 96 x 96 x 128), where each CBCT image
patch has a corresponding annotated mask (with a size of
96 x 96 x 128). To learn the implicit representation of each
tooth shape, we randomly sample and train with a total of
103 query points on the surface reconstructed from the tooth
mask. Then, random displacements with Gaussian distributions
are added to these query points, and their occupancies (i.e.,
outside or inside the surface) are used for supervision. More
specifically, we use two Gaussian distributions with deviations
of o1 = 0.03 and o, = 0.1, for half of the points, respectively.
Note that, for each iteration during the training, we only
randomly sample 50000 query points from this pool to train the
implicit function network, which is relatively small compared
to the 3D CNNs operated on volumetric data. In conclusion,
in the training stage, each tooth sample consists of a group
of data, with a 2D panoramic X-ray image patch, a ground-
truth 3D CBCT image patch, an annotated tooth mask of the
CBCT image patch, and 10° query points with occupancy.
In the inference stage, the total number of query points is
based on the resolution of the 3D CBCT images (i.e., voxel
grids of 96 x 96 x 128). This ensures the output of the image
space and geometric space to be of equal size, allowing them
to be integrated into the final stage.

Notice that 3D tooth shapes vary greatly between tooth
categories, as each type owns distinctive shapes according to
their respective roles for chewing. To this end, we discuss
and analyze the results for each specific tooth category in this
paper. As shown in Fig. 4, we denote the tooth categories as
T1-T7 for illustration purposes, based on the dental notation
system [39].

B. Evaluation Metrics

To quantitatively evaluate the performance of our method,
we introduce four metrics in both image and geometric space.
We use the structural similarity (SSIM) metric to measure the
quality of CBCT image reconstruction. For the 3D tooth model
reconstruction task, we utilize three metrics to validate the
performance at both image and surface level, including the
Dice coefficient (Dice), Hausdorff Distance (HD), and Average
Surface Distance (ASD). More specifically, the Dice metric is
performed on the segmented tooth mask, while the HD and
ASD metrics are measured on the generated tooth surface,
respectively, to indicate the maximum and average surface
distances.

C. Implementation Details

Our framework was implemented on the PyTorch platform
with Pytorch Lightning library, and trained on an NVIDIA
A100 GPU with the Adam optimizer. The learning rate is
initially set to 3e™*, and decays by 0.1 for every 50 epochs.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 21,2024 at 12:25:01 UTC from |IEEE Xplore. Restrictions apply.



MEI et al.: DTR-Net: DUAL-SPACE 3D TOOTH MODEL RECONSTRUCTION FROM PANORAMIC X-RAY IMAGES 523

r— Central incisor (T1)
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@ @Q 34 First premolar (T4)
4 2 33 Canine (T3)
4r 3l g Lateral incisor (T2)

Central incisor (T1)

Fig. 4. Tooth categories in the dental notation system. The oral cavity
is split into four quadrants: upper left, upper right, lower right, and lower
left. Each quadrant has seven teeth of different types. The two digits
of each tooth respectively represent its quadrant and its number from
the midline of the face. Specifically, wisdom teeth are excluded from this
study due to their limited samples. In this paper, we denote T1-T7 as
different categories of teeth for convenience (e.g., T1 represents the set
of teeth with ID 11, 21, 31, 41).

Notably, for the discriminator, it is updated only when the
loss Lpp is greater than a threshold of 0.1. As for the
overall loss function, the hyperparameters for different loss
terms set as Ag = 1, Ap = 0.1, Amrp = 0.1, and As =
0.2 in this paper. In regard to the network architecture, our
DTR-Net framework is composed of dual space modules.
In the image space, we adapt the network architecture from
DRR2CT’s 2D-to-3D autoencoder [30], which consists of
four convolutional blocks and four transposed convolutional
blocks. Our 3D discriminator comprises five 3D convolution
blocks. Each of these blocks contains a single convolution
layer, a batch normalization layer, and a LeakyReLU layer.
For the task-oriented segmentation network, we employ the
V-Net architecture, a widely-used method in this domain [34].
In the geometric space, the feature point sampling strategy and
the architecture of the MLP layers are directly adapted from
IF-Net [40].

During the inference time, we first locate the center point
of each tooth on the 2D panoramic X-ray image with
a center-based detection network. Like the training stage,
we crop the X-ray image into several small patches centered
at each tooth, with a fixed size of 96 x 96 x 128. Then,
we take the cropped X-ray patches as input to our dual-space
framework for reconstructing the 3D tooth models. Finally,
with the curve of the dental arch, estimated from the panoramic
X-ray image or optionally provided by the paired intra-oral
scanning data (if available), we put the reconstructed 3D tooth
models back to their corresponding positions in the 3D oral
space.

V. RESULTS

To demonstrate the advantage of our method, we first
compare our framework with several state-of-the-art methods.
Then, we conduct extensive ablation experiments to vali-
date the effectiveness of our dual-space design, including
task-oriented segmentation in the image space and also the
implicit function network in the geometric space.

A. Comparison

For comparison, we implement several recent state-of-
the-art methods, which are highly related to 3D tooth
reconstruction from 2D panoramic X-ray image, including:

o DRR2CT [30]: It is a 2D-to-3D auto-encoder network
for 3D CT image generation from a 2D panoramic X-ray
image, basically achieved by a transformation module that
converts 2D feature maps to 3D feature maps.

o Oral-3D [10]: It is also a 2D-to-3D auto-encoder network
for 3D oral cavity reconstruction from a 2D panoramic
X-ray image. This method utilizes a deformation module
based on convolution structures with dense connections
to unwarp the generated 3D flatten images into a 3D oral
cavity.

o X2Teeth [11]: Notice that it is specifically designed for
3D tooth model reconstruction from 2D panoramic X-ray
image, which conducts the same task as in this paper.
It first exploits a 2D localization network to detect the
bounding box of each tooth from 2D panoramic X-ray
image, and then involves a 3D tooth model reconstruc-
tion network to estimate 3D tooth model directly from
localized 2D features.

The overall 3D tooth model reconstruction results are pre-
sented in Table I, where our method significantly outperforms
other state-of-the-art methods in terms of all metrics. Con-
cretely, since original DRR2CT and Oral-3D only generate
CBCT images and do not acquire 3D tooth models, we adopt
the same pre-trained segmentation network used in our
method to segment tooth instances from the cropped CBCT
patches. X2Teeth directly reconstructs 3D tooth models with-
out intermediate CBCT image reconstruction. Thus the image
reconstruction metric (i.e., SSIM) is not available for quanti-
tative comparison.

Compared with DRR2CT, which simply performs a
2D-to-3D auto-encoder to reconstruct CBCT image from
X-ray image, our proposed method achieves remarkable
improvement with respect to SSIM score (2.25%), Dice
score (2.14%), and HD error (2.22mm), demonstrating the
advantages of our proposed dual-space network architecture.
Moreover, compared to Oral-3D that only uses a patch dis-
criminator to reconstruct 3D CBCT images, our method leads
to 4.01% improvement in Dice score and 2.45mm reduction in
HD error, respectively. Most notably, compared to the state-of-
the-art performance produced by X2Teeth, our method further
boosts the Dice score from 84.75% to 86.11%, and reduces the
HD error from 1.37mm to 1.20mm. We also quantify results
based on each tooth type in Table I. Note that the ASD errors
of molars (i.e., first molar T6 and second molar T7) with
the most complicated shapes have been significantly reduced.
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TABLE |
STATISTICAL COMPARISON OF 3D TOOTH MODEL RECONSTRUCTION BY OUR DTR-NET AND THREE STATE-OF-THE-ART METHODS
Method T1 T2 T3 T4 TS T6 T7 Mean
DRR2CT 87.37 87.83 8499 88.04 86.14 7836 77.70  84.084+0.05
Oral-3D 86.34 85.84 8395 8643 8532 7854 7624  83.124+0.05
SSIM (%) 1 X2Teeth - - - - - - - -
DTR-Net 89.81 90.74 87.59 8993 8849 7996 79.11 86.32 + 0.05
DRR2CT 76.51 8091 8645 8945 8652 8359 86.53 83.974+0.09
Dice (%) 1 Oral-3D 75.08 7645 8437 87.38 85.15 83.53 83.11 82.104+0.09
X2Teeth  75.73 80.64 8740 9045 87.79 83.63 86.03 84.754+0.09
DTR-Net 79.61 84.13 88.14 90.97 88.21 8588 88.29 86.11+0.08
DRR2CT 3.74 4.22 3.67 391 3.70 2.25 2.13 3.43+1.73
HD (mm) | Oral-3D 4.16 4.42 3.83 4.08 4.04 2.39 242 3.65+1.52
X2Teeth 2.27 1.64 1.12 0.75 0.96 1.53 1.39 1.374£0.82
DTR-Net 1.78 147 0.92 0.68 0.89 1.26 1.06 1.20+0.91
DRR2CT  0.76 0.68 0.51 0.40 0.50 0.47 0.44 0.561+0.29
ASD (mm) | Oral-3D 0.79 0.81 0.58 0.51 0.60 0.48 0.55 0.631+0.28
X2Teeth 0.59 0.44 0.32 0.22 0.29 0.41 0.41 0.3940.20
DTR-Net 0.49 0.35 0.28 0.21 0.28 0.35 0.33 0.34+0.22

(a) DRR2CT (b) Oral-3D

(c) X2Teeth

(d) DTR-Net

(&) GT

Fig. 5.  Comparison with three state-of-the-art methods. We visualize two typical cases of reconstructed 3D tooth models (two row) by different
methods (column). We demonstrate that DTR-Net (1) succeeds in capturing significant shape variance for different teeth, especially for the molar
teeth, and (2) shows effectiveness in local-detail restoration compared with other three methods.

All these results indicate effectiveness of using both the image
space (i.e., CBCT image and tooth mask) and the geometric
space (i.e., implicit surface function representation), where the
fine-grained tooth shape details can be produced accurately in
the reconstructing 3D tooth models.

To further illustrate the advantage of our proposed method,
the visual comparison of two typical examples is shown

in Fig. 5. It can be observed that the 3D tooth models
produced by our method match better with the ground truth,
especially at tooth roots with significant shape variations.
In addition, the competing methods without tooth segmen-
tation modules (i.e., DRR2CT and Oral-3D) fail to recover
complex tooth shapes, where many artifacts and discontin-
uous surfaces are introduced. This manifests that, with the
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TABLE Il
ABLATION STUDY OF OUR METHOD WITH DIFFERENT VARIANTS, INCLUDING THE TASK-ORIENTED SEGMENTATION, SELF-ATTENTION, AND
DIFFERENT SPACES (I.E., IMAGE-, GEOMETRIC- AND DUAL-SPACE)

Method Space Dice (%) T SSIM (%) T HD (mm) | ASD (mm) |
B-Net Image-space 81.99+0.55 83.47+0.10 3.17£1.66 0.6040.31
TS-Net £6-SP 85.4240.12  86.132£0.08  1.274093  0.36+0.24
G-Net Geometric-space 84.89+0.10 85.97+0.09 1.30+0.87 0.3840.27
SE-Net P 85.45+0.10  86.27+0.07 1.23+0.75 0.3540.22
DTR-Net  Dual-space 86.11+0.08 86.331+0.05 1.204+0.68 0.34-+0.22
1.0
o~
f
0.8
o
.
)
0.6
[ DRR2CT
[ Oral3D
0 X2Teeth
[0 DTR-Net
0.4 (a) X-ray (b) w/o (c)w (d) GT
T1 T2 T3 T4 TS5 T6 T7
Tooth category Fig. 7. Comparison of 3D tooth model reconstruction with or without

Fig. 6. Quantitative comparisons of different methods on different tooth
categories (T1-T7). The Dice scores of our proposed method and state-
of-the-art methods are compared through boxplots.

involvement of the segmentation module, our framework can
capture more effective semantic information for tooth shape
modeling. Furthermore, although X2Teeth also introduces a
tooth segmentation module, as shown in the 3rd column of
Fig. 5, the tooth geometric details still cannot be accurately
preserved. This is because it directly segments 3D tooth
instances from 2D X-ray images, ignoring the core supervision
from CBCT image reconstruction in the image space and tooth
surface reconstruction in the geometric space. Generally, the
qualitative results shown in Fig. 5 are consistent with the quan-
titative results given in Table I, which further demonstrates
the effectiveness of our proposed method for 3D tooth model
reconstruction from 2D X-ray panoramic image.

B. Ablation Studies

We conduct extensive experiments to demonstrate the effec-
tiveness of each of our proposed modules, including the
task-oriented segmentation module in the image space and the
implicit function network in the geometric space, respectively.
As shown in Table II, we present our proposed method in
five configurations: (1) The baseline network, denoted as
B-Net, directly reconstructs CBCT patches from X-ray patches
with a discriminator, followed by a pretrained segmentation
network to segment individual teeth from reconstructed CBCT
image patches. (2) Instead of simply using a pretrained seg-
mentation network on the CBCT image patches, we train the
CBCT image reconstruction and the tooth segmentation in a
collaborative way as introduced in Sec. III-B.3, denoted as

using the task-oriented segmentation module: (a) two 2D panoramic
X-ray image patches; (b) 3D tooth model reconstruction without using
the task-oriented segmentation; (c) 3D tooth model reconstruction using
the task-oriented segmentation module; (d) ground truth.

TS-Net. (3) We perform an implicit function network only
in the geometric space, denoted as G-Net. (4) Based on
G-Net, the self-attention module is employed in the fea-
ture map. (5) The full configuration, namely DTR-Net, aims
to reconstruct 3D tooth models in both image space and
geometric space.

1) Effectiveness of Task-Oriented Segmentation Module:
Compared with the baseline B-Net, TS-Net (i.e., B-Net with
task-oriented segmentation) involves both generated and real
CBCT image patches for tooth instance segmentation in a
collaborative way, by effectively bridging these two domains.
Moreover, the predicted tooth mask of the generated CBCT
patch can also benefit the CBCT image reconstruction, and
promote network attention to the foreground tooth regions.
As shown in Table II, TS-Net significantly improves tooth
reconstruction accuracy in terms of all metrics (e.g., improving
3.43% for Dice score and reducing 1.9mm for HD). Moreover,
we present two typical visual results in Fig. 7. For these two
cases of incisors, we notice that the baseline B-Net completely
fails to recover the tooth crown and root shapes, while the
TS-Net can produce results similar to the ground truth. These
results show that the task-oriented segmentation module can
provide more effective semantic information to capture the
global tooth shape.

2) Effectiveness of Self-Attention Module: In comparison
to the implicit function network in the geometric space
(i.e., G-Net), our approach employs a self-attention module.
This feature enhances the capture of long-term dependencies,
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(a) X-ray (b) w/o
Fig. 8. Comparison of 3D tooth model reconstruction with or without
using the implicit function network in the geometric space: (a) two 2D
panoramic X-ray image patches; (b) 3D tooth model reconstruction with-
out using the implicit function network; (c) 3D tooth model reconstruction
using the implicit function network; (d) ground truth.

WAIKIIN

(e) GT

-~ f. .‘

(a) X-ray (b) Image-space  (c) Geometric-space  (d) Dual-space

Fig. 9. The qualitative results of the tooth models reconstructed from
different spaces, including the image space, geometric space, and dual
space.

optimizing the framework for processing global tooth shape
information. To validate the effectiveness of this approach,
we have observed that incorporating the self-attention mod-
ule (implemented in SE-Net) consistently improves outcomes
across all metrics, such as an improvement of 0.07mm in terms
of Hausdorff Distance (HD).

3) Effectiveness of the Implicit Function Network: In our full
framework, we augment TS-Net with an implicit function
network in the geometric space. This encourages the network
to recover more geometric details for the 3D tooth models,
especially at the tooth roots with significant shape variation.
As illustrated in Table II, compared to the networks designed
only in the image space (i.e., TS-Net) or the geometric-
space (i.e., SE-Net), our full method based on the dual-space,
DTR-Net, achieves the best performance. Also, qualitatively,
as shown in Fig. 8 and Fig. 9, the tooth models match better
with the ground truth, by carrying more fine-grained tooth
details. All these results indicate that our full method built in
the dual spaces can generate accurate 3D tooth models from
2D panoramic images.

Case-1

Case-2

-

(a) X-ray (b) Ours (©) GT

Fig. 10. Two typical reconstructed CBCT patches of our framework.

VI. DiscuUssION

In digital dentistry, tooth model reconstruction is the pre-
requisite for dental diagnosis and treatment planning, for
which panoramic X-ray images would be the most cost-
effective modality. Unfortunately, despite great significance,
tooth model reconstruction from panoramic X-ray images has
not been well studied. This task involves major challenges
in reconstructing 3D tooth models, including the ill-posed
problem of recovering actual 3D space from 2D images,
and the complexity of tooth shapes. Current methods fail to
provide reliable tooth shapes, as they simply study the intensity
distribution in the image space, without learning the foremost
geometric properties. To address this problem, we present a
novel dual-space framework by considering both perspectives
in the image space and the geometric space.

Our method jointly learns through both image space and
geometric space, to supervise the learning of image intensity
and 3D shapes, respectively. Specifically, the image space
provides the basic intensity distribution of the target tooth,
which is further enhanced by the task-oriented segmentation
to focus on the foreground tooth area. Notably, the geometric
space is learned gracefully with a coordinate network, which
enjoys continuous space to study the geometric properties of
tooth shapes and contours. Extensive experiments have demon-
strated that our dual-space method surpasses state-of-the-art
methods quantitatively and qualitatively. More specifically,
image generation with task-oriented segmentation in the image
space, and the implicit function network in the geometric space
have both shown their effectiveness in our ablation studies.

Additionally, our framework not only generates solid tooth
models, but also 3D CBCT patches from X-Ray images,
offering more comprehensive texture and oral information,
as shown in Fig.10. However, this is merely an intermediate
step in image processing. The detailed anatomical structures,
such as the root canal and alveolar bone, are not reliably repro-
duced in this step (with a reliability measure of 19.45 dB),
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(a) X-ray

(b) Ours

(c) GT

Fig. 11. The failure case of reconstructed models with overlapped teeth
in the 2D panoramic X-ray image.

making this approach unsuitable for diagnosing these diseases,
especially in their early stages. Therefore, our framework
is more beneficial for addressing dental issues that rely on
solid tooth models, such as orthodontic planning. It is not
suitable for diagnosing dental diseases that require precise
image density information.

While our method has demonstrated impressive perfor-
mance, it still has some limitations. 1) As the paired panoramic
X-ray and CBCT images are not available in real clinical
scenarios, we alternatively utilize DRR to simulate a paired
panoramic X-ray image from each CBCT image, and supervise
the network by training with these data pairs. This yet leaves
a domain gap between authentic panoramic X-ray images
and our simulated ones. 2) Also, panoramic X-ray images
often suffer from severe ambiguity in the overlapping areas to
separate adjacent teeth. In this paper, we manage to alleviate
this impact by focusing on the foreground tooth with the
help of task-oriented segmentation. However, the CBCT patch
generated from the X-ray patch often contains information
from adjacent teeth, which causes ambiguity to likely mislead
the reconstruction, as shown in Fig.11. 3) Learning-based
methods commonly yield smoother results, as also observed
in the computer vision community when reconstructing 3D
facial or human body models from 2D images. Furthermore,
the use of linear interpolation to derive query point features
from feature maps leads to a loss of high-frequency details
and thus a smoother output. To capture more shape details
in the reconstruction, a promising strategy is to incorporate
2D hints, such as root landmarks. In future work, we also
plan to incorporate information from 3D intra-oral scanning
data, a non-radiology data source with detailed tooth crown
information, to guide and recover tooth surface details from
2D X-ray images.

VII. CONCLUSION

In this paper, we have presented a novel dual-space method,
namely DTR-Net, to reconstruct 3D tooth models from 2D
panoramic X-ray images. Considering no large set of pair-
wise panoramic X-ray images and CBCT images in real
dental clinics, we propose to simulate X-ray image patches
from CBCT images to build data pairs for network training.
We further solve our problem in both image space and
geometric space. Specifically, in the image space, we first
apply a 2D-to-3D generative model to recover intensities of
the CBCT image, guided by a task-oriented segmentation

module. In the geometric space, we leverage the implicit
function network to learn important geometric details of tooth
shapes. Extensive experiments demonstrate that our proposed
DTR-Net can effectively reconstruct 3D tooth models (even
with complicated tooth shapes) by restoring local geometric
details.
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