
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 28, NO. 6, JUNE 2024 3523

NKUT: Dataset and Benchmark for Pediatric
Mandibular Wisdom Teeth Segmentation

Zhenhuan Zhou , Yuzhu Chen , Along He , Xitao Que , Kai Wang , Rui Yao , and Tao Li

Abstract—Germectomy is a common surgery in pedi-
atric dentistry to prevent the potential dangers caused
by impacted mandibular wisdom teeth. Segmentation of
mandibular wisdom teeth is a crucial step in surgery plan-
ning. However, manually segmenting teeth and bones from
3D volumes is time-consuming and may cause delays in
treatment. Deep learning based medical image segmenta-
tion methods have demonstrated the potential to reduce
the burden of manual annotations, but they still require a
lot of well-annotated data for training. In this paper, we ini-
tially curated a Cone Beam Computed Tomography (CBCT)
dataset, NKUT, for the segmentation of pediatric mandibu-
lar wisdom teeth. This marks the first publicly available
dataset in this domain. Second, we propose a semantic sep-
aration scale-specific feature fusion network named WTNet,
which introduces two branches to address the teeth and
bones segmentation tasks. In WTNet, We design a Input
Enhancement (IE) block and a Teeth-Bones Feature Sep-
aration (TBFS) block to solve the feature confusions and
semantic-blur problems in our task. Experimental results
suggest that WTNet performs better on NKUT compared
to previous state-of-the-art segmentation methods (such as
TransUnet), with a maximum DSC lead of nearly 16%.

Index Terms—CBCT dataset, pediatric wisdom teeth
segmentation, pediatric germectomy, multi-scale feature
fusion.

I. INTRODUCTION

MANDIBULAR wisdom teeth (MWT) typically erupt in
the mouth between the ages of 17 and 24. Due to limited

growing space, they have a high probability of developing into
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horizontally impacted teeth. Such teeth are often associated with
oral pathological changes such as anterior crowding, periodontal
diseases, and even damage to adjacent teeth [1]. Removal is
generally considered the most effective solution for impacted
MWT, which may cause pain or lead to pathological changes.
However, the removal of mature MWT may be associated with
some short-term postoperative complications, such as alveolar
osteitis and pain [2], which may significantly affect a patient’s
daily life. Germectomy is a frequently performed surgery in
pediatric dentistry to avoid complications caused by MWT. It
involves the extraction of incipient MWT germs when their
crowns and roots have not yet completed development [3]. How-
ever, the implementation of germectomy depends heavily on the
experience of dentists and can be highly subjective. Therefore, it
is promising to adopt computer-aided diagnosis (CAD) methods
to develop a more objective surgical plan with minimal trauma.
Pediatric MWT segmentation is a prerequisite for building such
a system.

Recently, AI methods based on traditional machine learning
and deep learning have achieved certain success in the field
of dental computer-aided diagnosis. Wu et al. [4] introduced
a four-stage method based on dental panoramic radiographs to
help dentists obtain a reliable assessment of parameters for or-
thodontic evaluation. Reference [5] proposed a novel framework
called Dental Diagnosis System for dental diagnosis based on
the hybrid approach of segmentation, classification and decision
making. This work was tested under a real dental case of Hanoi
Medical University and achieved good performance. Deep learn-
ing [6] based methods have also made considerable progress
in teeth analysis and segmentation tasks. For example, Tian
et al. [7] developed a computer-aided Deep Adversarial-driven
dental Inlay reStoration (DAIS) framework for the automatic
reconstruction of a realistic surface for a damaged tooth, which
providing higher clinical applicability. Lai et al. [8] introduced
an approach employing deep convolutional neural networks to
aid in human identification through the automatic and precise
matching of 2-D panoramic dental X-ray images. Rajee et al. [9]
proposed an algorithm to estimate the gender of human from
dental x-ray image (DXI). The proposed method was trained
and tested on a dataset consisting of 1000 DXI images, and the
results indicate that the performance of the proposed method
has achieved better outcomes. Tian et al. [10] introduced a
gingival margin line reconstruction (GMLR) framework driven
by a deep adversarial network to automatically acquire the
personalized gingival contour for a partially edentulous patient.
Qiu et al. [11] presented a low-cost annotation way and a dental
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Fig. 1. Images and annotations from the proposed NKUT dataset. (a),
(b) and (c) denote the axial, coronal, and sagittal views respectively, and
(d) represents the 3D rendering results of annotations via ITK-Snap.

arch prior-assisted method for 3D tooth instance segmentation,
Zhang et al. [12] explored a two-stream graph convolutional
network to learn multi-view geometric information in 3D dental
models. Jang et al. [13] proposed a hierarchical multi-step model
to identify and segment 3D individual teeth from dental CBCT
images. These methods have achieved good results, further
demonstrated the significant potential of using deep learning
methods in pediatric MWT segmentation tasks. However, there
are still several limitations when applying these methods to
pediatric MWT segmentation task. Firstly, most previous works
were trained and evaluated on in-house datasets and mainly
focused on the analysis and segmentation of adult teeth rather
than children. Secondly, the majority of previous works did not
specifically focus on the analysis of wisdom teeth, and almost
no research dedicated to addressing the significant multi-scale
problems faced by segmenting pediatric MWT germs, second
molars and alveolar bone. Therefore, a publicly available dataset
with high-quality expert annotations and a effective model for
the multi-scale challenges in pediatric MWT segmentation tasks
are urgently needed for the researches of CAD on pediatric
germectomy.

To address these issues, in this paper we first constructed
a CBCT dataset called NKUT, specifically for the pediatric
MWT segmentation task. The dataset contains 133 CBCT
volumes encompassing more than 53,000 slices. The patients
range in age from 7 to 22 years old, with an average age of
13.2 years. All scans in NKUT were manually labeled in great
detail by pediatric experts and covering three different pixel-
level annotations: bilateral MWT germs, bilateral mandibular
second molars (SM) and partial bilateral mandibular alveolar
bones (AB), as shown in Fig. 1. The eruption trend of MWT
and their positional distribution relative to the surrounding
AB are very important for the clinical diagnosis of pediatric

germectomy. By segmenting and reconstructing the annotated
area mentioned above, pediatric dentists can objectively deter-
mine the risk of MWT germs developing into horizontally im-
pacted wisdom teeth, while assess the necessity, optimal timing
and precise locations for pediatric germectomy procedures. We
will provide a detailed introduction to our NKUT dataset in
Section III.

The pediatric MWT segmentation task presents serious se-
mantic confusion and multi-scale challenges. On the one hand,
children in the mixed dentition stage may have not only MWT
germs but also some unerupted permanent teeth germs in their
alveolar bone. These germs are very similar in shape, which can
easily cause semantic confusion. At the same time, for the clini-
cal analysis of pediatric germectomy, we only need to segment a
small part of AB that surrounding the MWT and SM, instead of
the entire alveolar bones. Therefore, it is also crucial to guide the
model to segment the AB in the correct locations. On the other
hand, because the tooth germs are soft tissue without calcified,
they usually terms to have a smaller volume compared to SM,
and SM also have a more smaller volume than the surrounding
AB. These factors imply that if a model wants to simultaneously
segment a patient’s MWT germs, SM and AB, it must be capable
of addressing the multi-scale problems. To address these issues,
we proposed a semantic separation scale-specific feature fusion
network named WTNet. It contains of two main components:
the Input Enhancement (IE) block, which enhances the original
input to provide stronger ROI feature representations and avoid
confusions. The Teeth-Bones Feature Separation (TBFS) block,
which utilizes a shared encoder and two independent decoders
to predict teeth and bones respectively, so as to improve the
segmentation performance. In the IE block, we designed a
Regional Feature Enhancement (RFE) block that uses a binary
ROI mask to let the share encoder pay more attention to the
target segmentation areas. In TBFS block, we developed a
Scale-specific Feature Fusion (SFF) block that enables the teeth
and bones branches to adaptively select suitable features from
the encoder. The experimental results show that WTNet can
outperform the previous SOTA segmentation methods on NKUT
dataset.

The key contributions in this paper can be summarized as
follows:

� We collected and annotated a 3D high-quality pedi-
atric CBCT dataset called NKUT, which is the first
dataset specifically designed for pediatric MWT seg-
mentation. We believe the NKUT will be valuable
for the researches of CAD on paediatric dentistry
germectomy.

� We proposed a semantic separation scale-specific fea-
ture fusion network called WTNet to segment teeth and
bones separately and address the problem of semantic-
blur and feature confusions. WTNet consists of two
main components i.e., IE block and TBFS block. In
the IE block, we designed an RFE block to enhance
the target features of original input slices,while in
the TBFS block, we designed an SFF block to let
the teeth and bones branches choose suitable encoder
features.
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Fig. 2. Examples of some previous public oral datasets, (a) Dental
X-ray, (b) LNDb, (c) CTooth.

� Extensive experiments were conducted on the proposed
NKUT dataset to establish benchmarks for pediatric MWT
segmentation. The results show that our WTNet outper-
forms previous SOTA networks and can serve as a strong
baseline for the pediatric MWT segmentation task.

II. RELATED WORKS

In this section, we briefly review previous open-source dental
datasets as well as the recent works on CBCT teeth segmentation
and multi-stage or multi-scale approaches.

A. Dental Datasets

Dental X-ray dataset [14] as shown in Fig. 2(a) was collected
in 2015, it contains 400 cephalometric radiographs and 120
bitewing radiographys. 19 landmarks were manually annotated
in each cephalometric radiographs and 7 locations including
caries, enamel, crown, dentin, pulp, root canal treatment and
restoration were manually annotated in each bitewing radiog-
raphys. Another X-ray dataset LNDb was collected in 2016 by
Jader et al. [15]. Compared to Dental X-ray, LNDb contains
1,500 annotated panoramic X-ray images. Images in this dataset
were manually categorized among 10 categories and all images
were cropped to 1991 × 1127 pixels. As shown in Fig. 2(b),
this dataset provided binary annotations between background
and full set of teeth. CTooth [16] and CTooth+[17] were the
first public 3D CBCT datasets proposed by Cui et al. in 2022.
The datasets consist of 5504 annotated CBCT slices of 22
patients and 25876 unlabeled CBCT slices of 146 patients. As
shown in Fig. 2(c), CTooth only provided binary annotations
and ignored alveolar bones. Although CTooth has more than
168 volumes and 30,000 slices, most of them are without any
annotations. However, these datasets are randomly selected and
not specifically obtained from pediatric dentistry, and none of
them have provided the annotations of the alveolar bones. These
factors leads to significant limitations to directly use them for
pediatric MWT segmentation task. Therefore, building a public
available high-quality dataset is crucial for advancing researches
in pediatric MWT segmentation.

B. Teeth Segmentation in CBCT

CBCT images show substantial advantages clinically, such as
accurate measurements and excellent resolutions, thus CBCT
has become the preferred imaging procedure for comprehensive

orthodontic treatments [18]. In recent years, with the devel-
opment of deep learning, some methods have been proposed
to solve the teeth segmentation tasks for CBCT images [19].
Cui et al. proposed a two-stage deep convolutional neural net-
work (ToothNet) [20] for automatic and accurate tooth instance
segmentation and identification from CBCT images. It is the
first neural network used for CBCT teeth segmentation task,
achieving the highest performance on a in-house CBCT dataset.
Cui et al. also presented a strong deep-learning-based AI system
with an ROI generation network and a specific two-stage deep
network to localize the foreground and explicitly leverage the
comprehensive geometric information [21], [22]. This frame-
work was evaluated on the largest in-house CBCT dataset,
including 4938 CBCT scans of 4215 patients. Zheng et al.
proposed a novel anatomically constrained Dense U-Net [23]
for integrating oral-anatomical knowledge, benefiting from the
integration with anatomical domain knowledge, it achieved
good results on a small dataset. In 2023, Liu et al. proposed
a metal artifacts and blurring robust CBCT tooth segmentation
method ToothSegNet [24], it generates degraded images and do
channel-wise cross fusion between the information of both high
and low quality images to reduce the semantic-blur problem
between encoder and decoder. They also constructed a private
CBCT dataset with sparse annotations to test their network and
achieved good performance. However, all these methods aim to
segment fully developed teeth rather than children’s teeth germs.
Consequently, they lack the ability to effectively address the seri-
ous multi-scale and semantic-blur challenges in pediatric MWT
segmentation tasks. In conclusion, it is necessary to develop a
model with robust multi-scale feature learning capabilities for
pediatric MWT segmentation.

C. Multi-Stage Methods & Multi-Scale Feature Fusion

The multi-stage approaches divide a major problem into sev-
eral sub-problems to be solved step by step, thereby improving
efficiency and effectiveness. In recent years, researchers have
proposed some multi-stage methods for various tasks. Pandey et
al. [25] introduced a two-stage generative adversarial network
to artificially increase the number of training image-mask pairs.
The approach used two GAN to generate the synthesized masks
and images, it was evaluated using the cell nuclei image seg-
mentation task and demonstrated the superior performance. Lei
et al. [26] proposed an unsupervised domain adaptation method
based image synthesis and feature alignment method to segment
optic disc and cup on fundus images. The method can be divided
into two main parts: the GAN-based image synthesis system
to generate high-quality target-like query images, and content
and style feature alignment to ensure the feature consistency.
Experimental results have demonstrated the effectiveness of
their method. Inspired by them, we employ the multi-stage
strategy to accomplish feature enhancement and segmentation
of pediatric MWT.

Multi-scale feature fusion is crucial for medical image seg-
mentation, especially when dealing with lesions which have
small volumes and low contrast. Recently, the researchers have
proposed some multi-scale fusion methods for medical image
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TABLE I
STATISTICS OF THE EXISTING TEETH DATASETS AND OUR NKUT.ML, WT AND PD REPRESENT MULTI-LABEL, WISDOM TEETH AND PEDIATRIC DENTISTRY,

RESPECTIVELY

segmentation. For example, Wu et al. [27] introduced a effi-
cient adaptive dual attention module and a spatial information
weighting method for automated skin lesion segmentation. He
et al. [28] designed a progressively multi-scale fusion network,
which improves the multi-class fundus lesion segmentation ac-
curacy by integrating features from the current encoder layer and
adjacent encoder layers. Wang et al. [29] proposed a cross-scale
boundary-aware transformer named XBound-Former to address
the boundary variation problem of the skin lesion segmenta-
tion. Different from previous works, our TBFS block use the
SFF blocks to ensure that each layer of the decoder receives
contextual information from each level of the encoder, thereby
increasing the class-specific segmentation capability of different
branches.

III. NKUT DATASET

The lack of high-quality datasets is the major factor hindering
the CAD of pediatric dentistry germectomy. We aim to introduce
a valuable dataset with high-quality annotations for the relevant
researches. This study has undergone review by the Medical
Ethics Committee of Tianjin Stomatological Hospital and has
been confirmed to fully comply with the Helsinki Declaration
and relevant regulations on biomedical human experiments
in the People’s Republic of China. The approval number is
PH2021-B-024_001, and the approval date is March 30, 2021.

A. Collection

Several 2D and 3D open-source dental datasets are listed in
Table I. Different from them, our NKUT focus on the pediatric
MWT segmentation task. NKUT contains 133 CBCT volumes,
which were scanned using NewTom VGi scanners without any
appearance enhancements. We collected all original DICOM
files from the Department of Pediatric Dentistry, Tianjin Stom-
atological Hospital (grade-A tertiary hospital). All files have
been desensitized for public use. During the data collecting
stage, radiologists initially examined the patients’ volumes in
the database and selected the clear volumes with appropriate
ages and MWT development status. After the first round primary
selection, the chosen volumes will be reviewed by two paediatric
dentistry experts to ensure their quality. Finally, a total of 133
CBCT volumes were selected to establish the NKUT dataset.
The average age of these patients is 13.2 years, with 81 males and
52 females. The detailed distribution of the dataset is illustrated

Fig. 3. Distribution of age and gender in the NKUT dataset. The
horizontal axis of the table corresponds to age and the left vertical axis
shows the count.

in Fig. 3. It is worth to note that we collected 34 cases aged 18 to
22 years in the NKUT dataset for two main reasons: Firstly, we
aim to enhance the diversity of NKUT, encompassing various
developmental stages of MWT, thereby improving the robust-
ness of NKUT and facilitating subsequent researches; Secondly,
we intended to enhance the generalization performance of the
models. We aspire that the models trained on NKUT can not only
identify MWT germs but also recognize MWT at various stages
of development, from germ to complete calcification. When we
release NKUT, we will clearly indicate which data belong to
individuals aged 18 and above. Researchers can then decide
whether to incorporate this subset into their studies.

B. Annotation

NKUT provides three pixel-level labels, including bilateral
MWT germs, SM and a portion of surrounding AB. All scans
in NKUT were manually annotated in detail, the annotation
tool we used is ITK-SNAP, and the major annotation work was
done by two senior experts in paediatric dentistry with at least
ten years of experience from Tianjin Stomatological Hospital.
The annotation can be divided into two stages: annotating and
reviewing. During the annotating stage, we split the data into
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Fig. 4. Overall structure of the proposed WTNet. It consists of two basic components: Input Enhancement (IE) block and Teeth-Bones Feature
Separation (TBFS) block. Labels represent the corresponding ground truths and maps denote the prediction of input slices.

two non-overlapping subsets and assign each subset to different
experts for annotation, two experts used automatic threshold
method to obtain the different rough masks of bilateral MWT,
SM and AB. Then they fine-tuned all rough masks slice-by-slice
in the axial, coronal and sagittal views to get the high-quality
pixel-level labels. Finally, we obtained the annotation results for
all data. It takes us about 10 hours to get and refine the rough
masks of each volume. In the reviewing stage, after shuffling
all the data, we invite the experts to review and discuss all
133 volumes one by one. For data on which a consensus is
reached, we organize and store it in the database. For data
on which the two experts cannot reach a consensus, they will
adjust the annotations until an agreement is reached. Finally, we
cropped out the redundant (without annotations) regions along
the horizontal plane in the scans to complete the establishment of
the NKUT dataset. The whole process of collecting, annotating,
reviewing and adjusting the entire dataset took us more than
12 months.

IV. METHODOLOGY

In this section, we first provide a brief overview of the pro-
posed network and then detail each component in the following
subsections.

A. Overview

The overall pipeline of WTNet is illustrated in Fig. 4, it can be
divided into two main components: (1) Input Enhancement (IE)
block aims to enhance the feature representation of the target
segmentation areas. Additionally, a RFE block is designed to
induce the module and let it pay more attention to the regions
that need to be segmented. (2) Teeth-Bones Feature Separation
(TBFS) block is responsible for predicting the segmentation
masks of teeth and bones separately. In order to enable the inde-
pendent branches in TBFS block to learn appropriate multi-scale

features, we propose Scale-specific Feature Fusion (SFF) blocks
for semantic dissociated multi-scale feature fusion. The SFF
blocks allow adaptive feature selections for the segmentation
of teeth and bones, which enhance the ability of multi-scale
segmentation in WTNet.

Specifically, given a image I ∈ RH×W×C×D∗
, here H , W

and C denote the height, width and the channel numbers of the
image. D∗ represents an optional dimension: when the input
is 3D data patches, this term indicates the depth of input data;
In the case of 2D slices, this term is omitted. I will be sent
to IE block to get a binary ROI mask Y ∈ RH×W×D∗×1, then
I and Y will be sent to the RFE block to get the enhanced
input X ∈ RH×W×D∗×C . In the TBFS block, X will be first
sent to a shared encoder, which has four encoder layers and
a bottleneck layer follows the way of VGG16 [30] (for 3D
training, the share encoder is same as the 3D-Unet [31] encoder)
to produce the hierarchical features of X . We denote the output

features of encoder-layers as Fi ∈ R
H

2i−1 × W

2i−1 × D∗
2i−1 ×Ci , where

i ∈ {1, 2, 3, 4}. Then all Fi will be sent to the SFF blocks of the
teeth branch and the bones branch respectively, so that different
branches can adaptively select multi-scale features and local
spatial information for scale-specific feature fusion. Finally, the
outputs include a teeth segmentation mask T ∈ RH×W×D∗×3

and a bones segmentation mask B ∈ RH×W×D∗×2. Next, we
detail each component of the proposed method.

B. Input Enhancement Block

1) Motivation: In the pediatric MWT segmentation task, it is
crucial to ensure that the network can accurately localize the
target areas. Taking inspiration from previous works like [20],
we design the IE block to enhance the target features of the
original input slices. We further designed an RFE block, which
is the crucial and major component of the IE block. By enhancing
the original slices X using the generated ROI mask in the RFE
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Fig. 5. Schematic diagram of the RFE Block in the IE Block.

block, we can strengthen the feature representations and induce
the network to pay more attention to the target areas. This plays
a vital role in distinguishing MWT, SM, and AB from other
regions.

2) Structure Details: Specifically, in IE block, we first em-
ploy a Unet [32] structure with VGG16 [30] backbone to get the
Binary ROI mask of the input data (for 3D training, we utilized a
3D-Unet [31] directly). In this process, we employ a binary label
generated from the original label for supervision. Given original
label with annotations i, where i ∈ {0, 1, 2, 3} and they denote
backgrounds, MWT, SM and AB, respectively. The binary label
used in IE block can be produced by setting the pixel values of
SM and AB in original label to 1. After that, the output Binary
ROI mask Y and original input slices I will be sent to the RFE
block to get the enhanced output X , as shown in Fig. 5. We can
obtain X using the following formula:

X = Conv1×1(×1)(Concat(((I ⊗ Y )⊕ I), I ⊗ Y, I)) (1)

where Concat denotes concatenation along the channel dimen-
sion and we utilize this step to effectively fuse the features of the
original and baited slices, while also avoiding the excessive influ-
ence of ROI mask on the final segmentation results. Conv1×1(×1)

refers to a 1× 1(×1) convolutional layer with pading = 0,
which can further fuse features and perform channel dimension
reduction. ⊗, ⊕ donate the element-wise multiplication and
element-wise addition.

C. Teeth-Bones Feature Separation Block

1) Motivation: Children’s MWT germs, SM and surrounding
AB differ significantly in volume and morphology, leading to
serious multi-scale challenges. In order to allow the model to
learn specific features related to teeth, germs and bones, we
utilize the divide-and-conquer strategy to generate segmentation
masks in different scales. Inspired by [33] we propose Teeth-
Bones Feature Separation (TBFS) Block to use a structure with
shared encoder and specific decoders to specifically enhance the
model’s ability to address the multi-scale problems.

2) Structure Details: We utilize a shared encoder to extract
hierarchical features from the enhanced slices. We employ two
independent specific decoders to generate segmentation maps
for teeth and bones. Specifically, the teeth branch is only re-
sponsible for segmentation of MWT and SM, the ground truth
of teeth branch can be produced by setting the label of AB in the
original labels to 0. Another branch is only used to segment AB,
the ground truth of bones branch can be produced by setting

the label of MWT and SM in the original labels to 0 and the
AB label to 1. The output feature maps of the shared encoder
can be represented as Fi, where i ∈ {1, 2, 3, 4, 5}, please note
that F5 corresponds to the output of bottleneck layer. In contrast
to traditional skip connections, which only fuse features with
the same spatial resolution on a single scale, {F1, F2, F3, F4}
in WTNet will be sent to the SFF blocks for scale-specific
integration. We will introduce the SFF blocks in the following
subsection.

D. Scale-Specific Feature Fusion Block

1) Motivation: To enhance the feature learning capabilities
of the specific branches in TBFS, we introduce the Scale-
specific Feature Fusion (SFF) Block. It is widely recognized
that maintaining low-level features is crucial for segmenting
small objects [34] such as the tiny MWT germs and SM. Pre-
vious works [35] and [28] have demonstrated the importance
of multi-scale feature fusion. Taking inspiration from them,
we designed the SFF blocks, which take the full-scale output
features of the shared encoder as input and then send them to
the specific decoders for feature fusion. The SFF blocks enable
each level of the decoders to integrate rich full-scale features,
thereby enhancing the scale-specific features fusion ability of
the TBFS block.

2) Structure Details: As shown in Fig. 6, within the SFF
blocks, we utilize the full-scale features {F1, F2, F3, F4} ob-
tained from the shared encoder as input. In each SFF block,
the four outputs are first adjusted to the same spatial resolution
and subsequently concatenated along the channel dimension.
More specifically, in the teeth SFF block, {F1, F2, F3, F4}
are first adjusted the resolutions and concatenated to ZT ∈
RB×Cf×D∗

2 ×H
2 ×W

2 using the following formula:

ZT = Concat(APk=2(F1), F2,UPk=2(F3),UPk=4(F4)) (2)

where AP, UP and k represent adaptive average pool layers,
bilinear upsampling layers and the scale factor, respectively.
Here Cf = C1 + C2 + C3 + C4 and B represents the batch
size. Then the output ZT will pass through a Channel Attention
(CA) block following the approach of [36] to adaptively adjust
the attention scores across different feature scales. Let the output
of CA be denoted as ẐT with the same size of ZT . The final

output F̂ t
i ∈ R

H

2i−1 × W

2i−1 × D∗
2i−1 ×Ci of the teeth branch SFF can

be calculated using the following formula:

F̂ t
i = SA(Restore(ẐT )⊕ Fi), i = (1, 2, 3, 4) (3)

Here SA refers to the Spatial Attention block [37], and the
symbol ⊕ donates element-wise addition. The Restore layer in
SFF serves to convert ẐT to four different Xi, each of which
matches the spatial resolution and channel number of Fi. More
specifically, in the Restore layer, four 1× 1(×1) convolutional
layers are employed to adjust the channel number of ẐT to align
with Fi. Then we use various resample layers to restore the
spatial resolution of ẐT to match that of Fi. The overall process
of the Restore layer of teeth branch SFF can be considered the
inverse operation of (2). Consequently, ẐT will be transformed
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Fig. 6. Overall structure of the proposed SFF blocks in both Tooth branch and Bone branch. The CA and SA denote channel attention and
spatial attention, respectively. Samplingx−1 represents the inverse process of the corresponding sampling operation. For example, if Sampling1 is
downsampling 2×, then Sampling1−1 is upsampling 2×. If Sampling is Identity, then Sampling−1 is also Identity.

into four different Xi, where i ∈ {1, 2, 3, 4} and the size of Xi

is consistent with Fi. Then each Xi undergoes element-wise
addition with its corresponding Fi. The results will be then
passed through four independent SA layers to extract spatial
features and get the final output F̂ t

i . The F̂ t
i are used in the skip

connections at corresponding positions within the decoder.
Similarly, in bones branch, the ZB ∈ RB×Cf×D∗

4 ×H
4 ×W

4 can
be calculated using the following formula:

ZB = Concat(APk=2(F1),APk=4(F2), F3,UPk=2(F4)) (4)

please note that in the teeth branch, we adjust the resolutions of
feature maps in all scales to half of the original input resolutions,
while here we adjust them to a quarter of the original input reso-
lutions. The reason is that we hope more low-level features can
be retained in the teeth branch, and more valuable information
can be mined from the high-level features in the bones branch.
Thanks to the divide-and-conquer approach of the TBFS, we can
enable the teeth and bones branch to better learn scale-specific
features more effectively. The output of the CA in the bones

branch is denoted as ẐB , and the final output F̂ b
i of the bones

SFF branch can be calculated using (5). Note that the Restore
here represents the Restore layers in bones SFF, which can be
considered as the inverse operation of (4), differing from the
teeth branch.

F̂ b
i = SA(Restore(ẐB)⊕ Fi), i = (1, 2, 3, 4) (5)

E. Decoders

In each specific decoder of the 2D training stage, we employ
linear interpolation for up-sampling, followed by two 3× 3(×3)
convolutional layers with ReLU activation for feature learning.
To be specific, the output of each decoder in both the teeth branch

and bones branch can be calculated using the following formula:

Di = Concat(Conv3×3(×3)(UP(Di+1)), F̂i), i ∈ {1, 2, 3, 4}
(6)

Where D5 represents the output of the bottleneck layer F5 in the
shared encoder. In the final output layer, the feature maps in each
branch will be resized to the same resolution with the original
inputs X . Then a 1× 1 convolution layer is utilized to predict
the segmentation results, yielding T ∈ RH×W×D∗×3 and B ∈
RH×W×D∗×2. Here T and B represent the final segmentation
results of teeth branch and bones branch, respectively. In the 3D
training stage, we directly use the 3D-Unet [31] decoder as our
specific decoders.

F. Loss Function

During the training stage, we employ a combination of the
cross-entropy loss Lce and the Dice loss [38] Ldice as the loss
function of each output layers. The definitions of Lce and Ldice

are as follows:

Lce(P,G) = −
H×W×D∗∑

i=1

Gi · log(Pi) (7)

Ldice(P,G) = 1− 2 ·∑H×W×D∗
i=1 PiGi + τ

∑H×W×D∗
i=1 P 2

i +
∑H×W×D∗

i=1 G2
i + τ

(8)

where P and G represent the predicted maps and ground truth
of the input CBCT slices, respectively, and H ×W donates the
pixel numbers of output masks. τ is a smooth term. The entire
architecture can be trained using the following loss function:

L = LB
ce + LB

dice + Lt
ce + Lt

dice + Lb
ce + Lb

dice (9)

where LB , Lt and Lb represent the loss function for the binary
mask, teeth mask and bones mask, respectively.
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TABLE II
QUANTITATIVE COMPARISONS WITH SOME PREVIOUS STATE-OF-THE-ART

METHODS ON THE PROPOSED NKUT DATASET.

V. EXPERIMENTS

In this section, we will first introduce the data processing
methods, implementation details and evaluation metrics. Next,
we will compare WTNet with some SOTA segmentation meth-
ods and present the qualitative and quantitative experimental
results. Finally, we will conduct the ablation studies to verify
the effectiveness of each component in our method.

A. Data Processing

We performed the following processing on proposed NKUT
for network training and testing. The window-level and window-
width of all CBCT images were adjusted to 800 and 2500, re-
spectively. The HU values of all CBCT images were normalized
to the range of [0,255]. For the 2D training and testing stage, we
extracted images and labels slice by slice along the horizontal
plane from the original CBCT images. The input for 2D networks
is the 3-channel RGB images with a size of 256× 256. For the
3D training stage, due to the limitation of GPU memory, we
randomly cut 150 patches with a size of 64× 64× 64 around
the labeled areas in each training set CBCT scan, so, the input for
3D networks is the single channel gery level CBCT image blocks
with a size of64× 64× 64. For the testing stage of 3D networks,
we used a sliding window with non-overlap to sequentially
predict 64× 64× 64 patches. In both 2D and 3D testing, for
pixels where there are ambiguities between the teeth and bone
branches, we directly set those pixel values of the segmentation
masks to 0 to generate the final segmentation masks.

B. Implementation Details and Evaluation Metrics

1) Implementation Details: In the experiments, we applied
data augmentations of horizontal flips, vertical flips, and random
rotations to reduce overfitting. We utilized Adam optimizer [39]
to train all models. The total number of epochs was set to 200
with an initial learning rate of 0.0001. To ensure fairness, we
employed the same learning rate decay strategy to train the all
models, i.e., if the training loss does not decrease for more than

TABLE III
DSC COMPARISONS WITH SOME PREVIOUS SOTA METHODS ON THE

PROPOSED NKUT DATASET.

3 epochs, the learning rate will be decreased by multiplying
λ (where λ = 0.8 in our work). Additionally, if the validation
loss does not decrease for more than 10 epochs, the training
process will be terminated. The numbers of feature channels
for the four encoder-layers in both IE and TBFS blocks are
[64, 128, 256, 512] (the same settings are used for 2D and 3D.).
The 2D encoder backbones in IE and TBFS blocks were VGG16
pre-trained on the ImageNet [40]. For SegFormer we used its b0

version module pre-trained on VOC2012 [41]. Since the 3D
pretrained backbone is hard to find, the parameters of all 3D
methods were randomly initialized. All training were based on
Pytorch [42], torchio [43] and monai [44]. We use a Nvidia RTX
3090 GPU for 3D experiments and a Nvidia RTX 4090 GPU for
2D experiments.

2) Evaluation Metrics: The following metrics were adopted
for systematic performance evaluation, including mean Inter-
section Over Union (mIOU), pixel-wise Accuracy (Acc), Dice
Similariy Coefficient (DSC), Hausdorff distance (HD95) and
Average Symmetric Surface Distance (ASSD).

C. Comparisons With Other Methods

To demonstrate the effectiveness of our method, we compared
its 2D and 3D versions with some state-of-the-art 2D and 3D
image segmentation methods using the proposed NKUT dataset.
We utilized five-fold cross-validation to conduct comparative
experiments and reported the average results. Tables II and
III presents the quantitative results of these networks. We can
observe that the 2D version of WTNet achieves optimal segmen-
tation results. While the ToothSegNet [24] slightly outperforms
WTNet in bone segmentation, WTNet outperforms it in MWT,
SM, and overall performance.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 21,2024 at 12:18:04 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: NKUT: DATASET AND BENCHMARK FOR PEDIATRIC MANDIBULAR WISDOM TEETH SEGMENTATION 3531

Fig. 7. Qualitative results of our proposed WTNet and other state-of-the-art 2D and 3D segmentation methods, including (d) DeepLab V3+, (e)
TransUnet, (f) ToothSegNet, (h) 3D-Unet, (i) 3D-DenseNet, (j) VT-Unet, (k) UneTR and (l) Vnet. (a) and (b) donate original CBCT slice and ground
truth, respectively.

The visual comparison results are displayed in Fig. 7. WTNet-
2D exhibits outstanding performance on the NKUT dataset.
In comparison to other methods, it can segment intact teeth
and bones with well-defined boundaries, and the segmentation
results are the most similar to the manual annotations of pedi-
atric dentists. Thanks to the divide-and-conquer strategy and
the robust scale-specific feature fusion capability within the
TBFS block, WTNet can accurately segment teeth, germs and
bones at various scales simultaneously. In contrast to the skip
connection in Unet and its variants, SFF ensures scale-specific
feature fusion, preserving the semantic integrity of the decoders.
This is essential for achieving higher segmentation accuracy
and structural completeness, particularly when identifying tiny
teeth germs. The inclusion of the IE block enables WTNet to
accurately delineate target areas without confusion with other
neighboring teeth or bones.

D. Ablation Studies

To verify the effectiveness of the IE, TBFS and SFF blocks,
we conducted ablation studies based on the baseline Unet to
better understand the impacts of each component. We give the
qualitative and quantitative segmentation results and analyze
each block.

1) Analysis of IE Block: Comparing 2© with the baseline
Unet 1©, we can clearly observe the effectiveness of the IE
block. From a quantitative perspective, after incorporating the IE
block, the DSC of MWT, SM, and AB has improved by 1.09%,
1.30%, and 0.46%, respectively, compared to the baseline UNet.
These results indicates that enhancing the target features in input
images using the IE block can effectively improve the network’s
segmentation performance to some extent. Furthermore, when
comparing Fig. 8(c) and (d), it is not difficult to see that the
baseline Unet confuses the first molar with the second molar due
to their highly similar structures. After adopting the IE block,

Fig. 8. Visual comparisons of the segmentation results between differ-
ent configurations.

the network provides a more accurate assessment of the target
areas but still displays some confusion in the distinguishing
between MWT and SM. This suggests that while the IE block
enhances performance, it is still unable to effectively address
specific multi-scale feature learning challenges.

2) Analysis of TBFS Block: Expanding upon Tabel IV 2©,
we replaced the encoder-decoder structure in unet with the
TBFS block. We investigated the effectiveness of the TBFS
block in Table IV 3©, revealing that the TBFS block delivers
significant improvements when compared to the baseline UNet.
After adopting the TBFS block, the segmentation performance
of MWT, SM and AB has shown substantial enhancements,
with respective enhancements of 0.51%, 0.43% and 0.14%
compared to 2©. The visualization results, as shown in Fig. 8(e),

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 21,2024 at 12:18:04 UTC from IEEE Xplore.  Restrictions apply. 



3532 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 28, NO. 6, JUNE 2024

TABLE IV
THE CONTRIBUTIONS OF MAIN COMPONENTS IN WTNET-2D ON THE TEST

SET OF OUR NKUT DATASET.

demonstrate that, with the combination of IE and TBFS, the
network can more accurately localize the target regions and
provide more accurate and comprehensive segmentation re-
sults. In (e), both bilateral MWT germs and SM are segmented
well, representing a significant enhancement compared to (d).
The continuity and completeness of bone segmentation results
have also been further enhanced. This demonstrates that the
specificity-independent decoders within the TBFS contribute to
further improving the network performance.

3) Analysis of SFF Blocks: The standard skip connections
used in TBFS can only fuse features with the same resolution at a
single scale, limiting the network’s capacity to solve multi-scale
segmentation problems. SFF blocks utilize features from all
scales provided by the shared encoder as inputs. Simultaneously,
the different SFF blocks in the teeth and bones branches enable
the model to dynamically select the specific features suitable
for each branch. As shown in Table IV 4©, we incorporated
the SFF blocks into the skip connections of various branches in
TBFS, forming the final structure of our proposed WTNet. In
comparison with the previous stage 3©, the addition of SFF has
led to a notable improvement in segmentation performance for
all targets.

From the visual results in Fig. 8, it becomes more apparent that
the segmentation results displayed in (f) exhibit more intricate
details and sharper boundaries. The network no longer confuses
the MWT germs and SM, and the segmentation results for
the bones are more comprehensive. The segmentation results
of Unet+IE+TBFS+SFF ( 4© WTNet) closely resemble the GT
shown in Fig. 8(b), underscoring the indispensable role played
by each module within WTNet.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first collected and annotated a CBCT dataset
called NKUT, which is the first 3D CBCT dataset for the
researches of pediatric MWT germs segmentation and CAD of
pediatric dentistry germectomy. Subsequently, we introduced
WTNet, composed of two key components: IE block with the
RFE block and TBFS block with the SFF blocks. WTNet
effectively address the challenges of semantic confusion and
multi-scale issues in pediatric MWT segmentation tasks. When
compared to other state-of-the-art 2D and 3D image segmen-
tation methods, WTNet achieves the best results on the NKUT
dataset. Furthermore, we also proved the effectiveness of the
three main components by ablation studies and visualization

results. We believe that our work will prove invaluable to the
ediatric dentistry germectomy research community.

However, our work still has some shortcomings. From the
perspective of establishing a public dataset: NKUT consists of
only 133 examples, which is still insufficient in scale and difficult
to meet the training requirements of complex and large models;
From the perspective of the network model: There is still some
room for optimization in the parameter quantity of WTNet. To
further improve these problems, we will continue to expand the
scale of the NKUT dataset and utilize methods such as model
quantization compression to reduce the parameter count of
WTNet. Additionally, we will explore efficient semi-supervised
methods to fully leverage labeled and unlabeled data.

In future, we will develop a pediatric intelligent diagnostic
system based on segmentation results and deploy it for clinical
trials. By analyzing the reconstructed segmentation results, we
can obtain the developmental trends of MWT and their shortest
distance from the surrounding AB. These findings can assist
doctors in making more objective assessments of the necessity
for surgery and determining the optimal surgical plans.
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