R-Fans 导航型激光雷达

用户手册

版本: 1.0

2020.7.16

目录

产品概述	5
简介	5
安全提示	5
设备维护	5
电气安全	5
激光安全	5
产品介绍	6
设备特点	6
设备技术指标	7
激光线束分布	8
产品结构	10
装箱物品	10
产品图示	10
产品尺寸图	11
坐标系定义	11
部件及接口定义	12
引出线缆接口	12
转接线缆	13
设备使用	15
机械安装	15
电气连接	15
通信协议	15
激光点云数据通信协议	16
设备信息通信协议	16
用户信息配置协议	18
时间同步	19
相位同步	19
软件与驱动	21
ROSDRIVER	21
CTRLVIEW	22
软件安装	22
软件启动	22
设备连接	23
激光雷达监控	23
点云存储与播放	25
点云显示设置	26
<u> </u>	28

常见问题

联系方式

31 32

产品概述

本章主要介绍 R-Fans 导航激光雷达的安全注 意事项、设备特点和技术指标。

产品概述

简介

感谢您选用 R-Fans 激光雷达产品, R-Fans 激光雷达将为您提供实时高效的空间三维数据。 本用户手册包含 R-Fans 系统的安装和操作说明,请在使用前仔细阅读本手册,谨记注意事

项,避免危险操作。

该手册将随着产品技术升级实时更新,用户可以在 <u>www.isurestar.com</u>网站上下载到最新的用户手册。

安全提示

设备维护

电气安全

Δ	•本产品内部已进行屏蔽及静电防护,通过电源线的接地导线接地,对任何部件施加的电压禁止
	超过其允许的最大额定值,以避免火灾或人身伤害。
	•电路连接前须拔下断路开关或防尘盖。接通电源后,禁止接触外露的线路和设备相关部位

激光安全

• RFans 系列产品是 I 类激光安全产品,符合 IEC 60925-1:2014 标准

▲ • RFans 系统防护等级为 IP67。

产品介绍

RFans 激光雷达通过多线激光束 360°扫描实现三维探测成像,基于高精度激光回波信号测量技术,RFans 具备测程远,测量精度高等特点。

RFans 激光雷达设备轻小,功耗低,可以轻松集成应用于无人车、无人机、无人船等各类智能系统。

北科天绘提供售后技术支持服务,帮助用户协调系统集成及使用过程中与设备相关的问题。

设备特点

- 1. 探测能力最远可达 200m, 测距精度 2cm;
- 2. 设备轻巧,运输方便,可以安置在小型包装箱内单人携带;
- 3. 可有效抵抗环境背景光干扰;
- 4. 目标反射回波强度标准为 8bit, 可选 12bit;
- 5. 重量仅 738g, 功耗低于 8W;
- 6. 工业化设计,可以有效适应车载平台的温湿度、运动及振动环境;

设备技术指标

RFans 系统具体技术指标见表 1。

设备型号	RFans 16M RFans 32		
激光波长	905	īnm	
发射点频	320kHz	640kHz	
激光等级	Cla	ss 1	
最大测距	20	0m	
测距精度	20	m	
回波模式	单回波	/双回波	
回波强度	8bit/	12bit	
垂直视场	26° (11°~-15°)	31° (15°~-16°)	
垂直角分辨率	1°/2°	1°	
水平视场角	36	50°	
水平角分辨率	0.09°~0.36°	(5~20Hz)	
帧频	5-20Hz(出)	厂默认 0Hz)	
通信接口	Ethern	et, PPS	
重量	~738 g		
工作电压	9~36 VDC		
功耗	≤ 12W		
设备尺寸(mm)	113 (D) ×70 (H)		
工作温度	-20 ~	· 70℃	
防护等级	IP	67	

表 1 RFans 系统技术指标

激光线束分布

R-Fans 的扫描线分布区间如下。

图 1 R-Fans-16M 角度分布区间

图 2 R-Fans-32 角度分布区间

产品结构

介绍 RFans 激光雷达的装箱物品、产品图示、部件尺寸、接口和坐标定义

产品结构

装箱物品

RFans 系统装箱物品清单见表 2 (具体配置以合同、装箱单为准):

表 2 装箱物品列表

物品	物品说明
激光雷达	R-Fans 雷达主体
转接线缆	一分三线缆,包括以太网接口、GPS 接口、电源接口
提取码卡	包含相关软件下载方式说明
电源适配器	R-Fans 供电线缆
合格证	R-Fans 出厂合格证

 ●用户打开包装箱后,应首先对照装箱单,查看物品状态,如出现和装箱单不符合的情况,请及 时联系供货单位。

产品图示

RFans 系统示意见图 3 R-Fans 雷达示意图。

图 3 R-Fans 雷达示意图

产品尺寸图

RFans 雷达尺寸见图 4~图 5:

图 5 仰视尺寸图

坐标系定义

RFans 坐标系定义如图 6 所示:

图 6 RFans 激光雷达设备坐标系

坐标系原点 O 位于设备中心轴上,距底座中心 39.8mm, Z 轴垂直于 R-Fans 底面,向上为 正方向,X 轴指向设备侧面引出缆线的方向, XYZ 构成右手坐标系(设备开机启动后顺时针 旋转)。

6

安装螺孔

3 电源/数据线缆电器接口

引出线缆接口

表 3 接口说明

							1 8 2 9 7 3 6 4 5		
		接口类型	l			SP	1310/P9		
		引出线缆长	度				0.3 米		
表 4 接口定义									
Pin	1	2	3	4	5	6	7	8	9
颜色	灰	透明	蓝	绿	黑	棕	黄	红	白
定义	E0_P	E0_N	E1_P	E1_N	ΤX	RX	PPS	V+	GND
功能	以太网 发送数 据正极	以太网 发送数 据负极	以太网 接受数 据正极	以太网 接受数 据负极	串口发 送数据	串口接 收数据	GPS 授 时同步 脉冲	电源 输入	接地

转接线缆

表 5 转接线缆接口说明

单线端接口

SP1310/P9

分线端接口

RJ45、DB9、XT30

注: RJ45 为 lidar 数据通信接口, DB9 为 GPS 信号接口, XT30 为电源接口

表 6 DB9 接口定义

DB9 接口定义					
Pin	2	3	5	6	
定义	RS232 Rx	RS232 Tx	GND	TTL	
功能	接收数据	发送数据	接地	TTL电平	

本章主要介绍 RFans 激光雷达的操作流程及使用注意事项。

设备使用

机械安装

 Λ

R-Fans 壳体底部有1个用于安装固定的 M6 螺钉孔。

R-Fans 下壳体的侧面引出线缆(电源/数据线缆)用于连接主控计算机、GPS 设备以及电源。

•用于固定激光雷达的安装底座建议尽可能的平整,不要出现凹凸不平的现象。

- •安装底座的材质建议使用铝合金材质,有助于激光雷达的散热。
 - R-Fans 应稳固安装于车辆或其他平台,所安装平台及附属物避免遮挡激光扫描视场。
 - •激光雷达可以以任意角度或姿态安装固定。
 - •激光雷达安装走线时,需要让线缆保持一定程度的松弛。

电气连接

线缆连接示意图见图 8:

图 8 线缆连接示意图

电气连接主要步骤为:

- 1. 将设备引出线缆与转接线缆单线端相连,如果长度不够,可以使用延长线;
- 2. 转接线缆分线端分别与电源、GPS 信号、上位机相连;
- 3. 将 R-Fans 接通电源并用网线与上位机连接后,打开电源开关, R-Fans 将进入工作状态, 并开始自动传输数据

▲ R-Fans 默认 IP 地址为 192.168.0.3,用户将上位机 IP 设置为 192.168.0.x (x 在 0~255 之间
 ▲ 任意设置,不为 3 即可),子网掩码设置为 255.255.255.0 之后,就可以用上位机接收 R-Fans
 传输的数据。用户可以使用北科天绘 CtrlView 软件,来实时查看或者录制点云数据。

通信协议

R-Fans 与上位机之间采用以太网介质,使用 UDP 协议进行通信。通信的内容主要有 3 类: 雷达数据通信、雷达设备信息通信、用户配置写入.。

R-Fans 网络参数可配置,出厂默认的设备 IP 和端口号模式,见表 7。

表 7 通信协议及端口

RFans 激光雷达用户手册

设备 IP	点云数据通信协议端口	设备信息通信协议端口	用户信息配置协议端口
192.168.0.3	2014	2030	2015

激光点云数据通信协议

1. R-Fans 激光点云数据输出为标准 8bit 灰度,同时可提供 12bit 灰度选项,如有需要可以在订货时进行选择。R-Fans 激光点云解析,请参考调用北科提供的 SDK。

设备信息通信协议

- 本协议主要用于激光雷达向上位机传输设备状态信息,包含固件信息,电机运行状态信息,设备温度,时间等。
- 2. 协议端口为 2030, I/O 类型为设备输出,上位机解析, R-Fans 设备每间隔 1 秒定期向 上位机发送数据包,数据包共 256 字节,基本结构见表 8:

Ţ	近日	偏移 (OFFSET)	长度 (BYTE)	寄存器 (0x)	内容	举例(大端)
Packag	e header	0	4	无	0xE1, 0xE2, 0xE3, 0xE4	0xE4E3E2E 1
Packag	e id	4	4	无	0x00000000-0xFFFFFFF;	0x0000000 1
	year	8	1		bit23:16	
	month		1	2028	bit15:8	
GPS	day		1		bit7:0	
Time	hour		1		bit31:24	
minute	minute		1	202C	bit23:16	
	second		1		bit7:0	
Device		14	4	1058	本地MAC前4组	0xFACA012 3
MAC_A	ddress	lress 2		105C	本地MAC后2组	0x0000456 7
Point C data po	loud ort	20	2	1068	bit15~0:数据端口(2014)	0x07DE 数据端口 2014
Comma port	and data	22	2		bit31~16:命令端口(2015)	0x07DF 命令端口 2015

表 8 设备通信协议结构

PPS phase angle	29	2	206C	bit31:16 phase angle	与设定角度 之间存在零 位修正的偏 差值,单位 0.01°
Package Format	31	1	1 2008 bit7:0,数据包回波模式		0x37, 最强 回波 0x36, 第一 回波 0x38, 最后 一个回波 0x39, 双回 波
device_tempera ture	33	2	20C0	bit15:0 温度0.01℃	
err_8b10b_cksu m	35	4	2100	bit31:16 通道1 err数量 bit15:0 通道2 err数量	
PointFrequency	39	4	20F4	unit Hz	
Device_status	43	4	20F8	<pre>{motor[7:0],GPS[7:0],IMU[7:0],init[7:0]} BIT26,相位同步标志0未同 步1同步 BIT25,电机稳定标志0不稳 1稳 BIT25,电机稳定标志0不稳 1稳 BIT24,电机转动标志0停1 转 BIT24,电机转动标志0停1 转 BIT24,电机转动标志0停1 转 BIT2,可间步标志0未同 步1同步 BIT16,PPS同步标志0未同 步1同步 BIT16,PPS同步标志0未同 步1同步 BIT2,系统升级中为1,否则 为0 BIT1,系统参数配置中为1, 否则为0 BIT0,系统初始化中为1,否 则为0</pre>	系统初始化 状态时,禁止 对设备进行 配置和远程 升级
serial_number	47	4	2024	bit31:0 SN码低4字节 bit31:0 SN码直4字节	
	2 I	4	2020	DILSTU SIN的局4子节	

Padding 55	201 (凑 齐 256bytes)	0xFF	
------------	------------------------------	------	--

用户信息配置协议

1. 本协议主要用于接收上位机的用户配置信息,用户可以根据需求配置电机参数和修改 IP。

2. 协议端口为 2015, I/O 类型为上位机输出,设备解析,命令和消息格式见表 9。

表 9 用户信息配置协议结构

序号	报文结构	字节数	序号	报文结构	字节数
01	报文头	8	03	命令 ID	16
02	校验和	8	04	命令数据	32

3. 通过本协议可以进行启动、停止、待机等命令控制,参考表 10

命令类型	报文头	校验和	命令 ID	命令数据	语意
	0xA5	0x4F	0x0040	0x0F000000	传感器停止,并待机
	0xA5	0x56	0x0040	0x0F000003	以 5Hz 转速 (300RPM) 启动
转速控制	0xA5	0xA6	0x0040	0x0F000053	以 10Hz 转速 (600RPM) 启动
	0xA5	0x46	0x0040	0x0F0000F3	以 20Hz 转速 (1200RPM) 启动
IP 配置	0xA5	0xD6	0x0064	0xC0A8000A	R-Fans 的 IP 地址改为 192.168.0.10
	0xA5	0x058	0x058	0x0000000	MAC 前4组 (示例)
SN/MAC	0xA5	0x05C	0x05C	0x0000000	MAC 后 2 组 (示例)
目标主机	0xA5	0x050	0x050	OxFFFFFFF	MAC 前4组 (示例)
目标主机 MAC	0xA5	0x054	0x054	0xFFFFFFFF	MAC 后 2 组 (示例低 16 位)
数据端口	0xA5	0x33	0x068	0x07DE07DF	2014 (高16位)
消息端口	0xA5	0x33	0x068	0x07DE07DF	2015 (低16位)

表 10 常用指令

●校验和的计算方式为:将命令 ID、命令数据的所有字节相加求和,再将和中因为进位超出 1 个字节的部分去掉,剩下 1 个字节为校验和。

●例如 "R-Fans 以 20Hz 转速 (1200RPM) 启动" 命令中, 命令 ID、命令数据的字节数据和 为 0x 40+0x 0F+0x 00+0x 00+0xF7=0x146, 去掉进位剩下的字节为 0x46, 所以该命令的 校验和为 0x46。

Δ

时间同步

- 1. R-Fans 接入 GPS 接收机提供的标准时间信号时可开启时间同步功能。GPS 接收机时间 信号包括 PPS 信号以及串口 GPRMC 数据 (包含 UTC 时间信息)。
- 2. 对 PPS 信号和数据要求如表 11:

表 11	PPS	信号及数据要求
~ · ·		

指标	内容	指标	内容
PPS 信 号类型	TTL	波特率	9600
脉宽	200ns	数据位	8
同步基 准	下一个 PPS 信号上升沿	校验	无
		停止位	1

- ●部分 GPS 接收机提供的 PPS 信号上升沿可能超前于串口 GPRMC 数据 (包含 Δ UTC 时间信息), R-Fans 记录的当前 PPS 对应的时间值会比真实的 UTC 时间少 1s, 请用户自行纠正该差值。
 - •如果 GPS 接收机提供的 PPS 信号上升沿晚于串口 GPRMC 数据 (包含 UTC 时间 信息),那么 R-Fans 记录的当前 PPS 对应的时间值即为该串口输入 UTC 时间。

相位同步

- 1. 当用户使用多台 RFans 时,可以开启相位同步功能,来解决不同 RFans 之间的串扰问题。
- 2. 相位同步功能默认为关闭状态,使用前,用户需要给 RFans 输入 PPS 信号,用户可通 过串口命令开启相位同步功能,并设置不同相位同步角度。
- 3. R-Fans 会基于时间同步信号自动调整电机,保证同一时刻不同 lidar 之间的相位角度差异。
- 4. 电机相位同步角度计算方式为:以 R-Fans X 轴方向为基准方向,按顺时针方向(y 正轴→x 正轴)计算角度。

软件与驱动

本章主要介绍 RFans 激光雷达的 windows 软件及 ROS 驱动使用方法。

软件与驱动

ROSDriver

ROSDriver 为本产品配套在 ROS 平台下的使用控制软件,详细操作说明见 U 盘中 ROSDriver 用户手册, ROSDriver 功能清单见表 12:

表 12 ROSDriver 功能清单

模块分类	功能说明
数据接收	● 接收 UDP 数据包;
	● 回放 pcap 文件。
解码解算	 时间同步,点云数据的时间戳与激光雷达保持同步,也可连接 GPS 设备对激光 雷达进行授时,点云时间戳同 GPS 时间保持同步;
	• PointCloud2 数据转 LaserScan 格式的数据,将转化后的数据以"scan"的话题发布到 ROS 系统中。
点云数据发布	● 点云显示:RVIZ 显示点云;
	●多台设备点云融合:两台设备点云显示;多台设备点云显示。
	●输出指定通道的点云数据;
数据计算	●输出指定距离的点云数据;
	● 输出指定水平角度范围的点云数据。

ROSDriver 安装要求为:

•操作系统: Ubuntu14.04 (ros indigo) /16.04 (ros kinetic)

▲ •内存: 推荐最少 2GB 内存

• 硬盘: 硬盘 80G 以上, 用于存储和分析点云数据

CtrlView

CtrlView 为本产品配套在 windows 下的使用控制软件,可用于配置、控制 R-Fans,并接 收和显示 R-Fans 回传的实时点云图像。

软件安装要求为:

●CPU: Intel Core i5 四核 CPU (或更高配置)

▲ •内存: ≥4GB

●操作系统: Window 7 或 Windows 10 操作系统计算机的 IP 地址设置为 192.168.0.xxx,子 网掩码为 255.255.255.0。

软件安装

双击安装包文件安装 CtrlView_vx.x.x, 直接在安装界面中点击下一步, 待进度条结束, 点击完成, 桌面上出现 CtrlView_vx.x.x 图标。

软件启动

- 1. R-Fans 设备上电、网络连接完成后,右击 CtrlView_vx.x.x 图标,以管理员身份运行 (打开 CtrlView 软件之前需保证上位机防火墙及其他防护软件,给予 CtrlView 通过权限)。启动后,打开控制面板雷达页面 (如图 9),点击启动按钮开始点云数据采集。

图 9 控制软件界面

2. CtrlView 主界面包括:菜单栏、点云显示窗口、控制面板;其中控制面板有状态监视 (State Monitor)、雷达(LiDAR)、点云视窗(ViewCtrl)三个选择标签。

设备连接

- 1. 使用管理员账户启动 CtrlView 软件,会按照软件默认配置的 IP 地址,自动连接 R-Fans, 连接成功会在控制面板的雷达标签下显示绿色长条。
- 2. 如果需要修改设备 IP, 点击菜单栏上的"设置", 选择"设置 IP 地址", 在弹出的对话 框中配置 R-Fans 实际 IP (默认为 192.168.0.3), 以及端口。

图 10 设置 IP 地址

●使用此功能设置 IP 地址在设备断电或重启软件时会失效,设备 IP 将恢复默认值, △ 需要重新设置。

•如果要永久更改设备 IP, 需使用固件配置的方式, 详见附录 B

激光雷达监控

1. R-Fans 连通状态下,选择"雷达(LiDAR)"标签页,设置"雷达类型(LidarType)"为 "R-Fans"模式,见图 11。

图 11 雷达标签页

2. 点击"开始(Start)", R-Fans 便可旋转采集点云数据,并将数据实时传输到上位机,并 在"点云显示窗口"显示三维点云。

- 3. 在设备工作过程中可以设置扫描频率和所显示点云的最小距离,扫描频率 R-Fans 模式 可设置为 5Hz、10Hz、20Hz。
- 4. 在控制面板"状态监视"标签页下,可以查看 R-Fans 的运行状态。

刮面板		8
状态监视 雷	ち 点云视窗	
	状态	
灰度	1 255	
距离	0.04 222.14	
传输速率	1.91	
数据量	0	
设备内温度[°	C] 33. 42	
UTC 时间	58.928408	
旋转速度[HZ]	5	
点频率[HZ]	639520	
水平角[°]	0.09	
设备类型	R-Fans 32	
PPS 角	162.720	
设备IP	192.168.0.3	

图 12 状态监视标签页

5. R-Fans 正常运行时,"状态监视"标签页能显示以下信息:

表 13 状态监视

状态出	监视内容
接收激光回波的强度范围	设备实时转速
测量获得的测距范围	设备实时点频
实时传输数据速率	水平角度分辨率
已经采集的数据总量	设备类型
设备内温度	实时显示的相位角
UTC 时间	设备 IP

6. R-Fans 在接收 GPS 信息时, UTC 时间栏实时显示"周秒", PPS 角栏实时显示同步的 相位角。每秒加 1, 在 R-Fans 未接收 GPS 信息时, R-Fans 能正常采集和传输数据, 但 UTC 时间和 PPS 角不能正常显示。 点云存储与播放

 点击"设置"菜单栏"保存点云数据"按钮,可以将点云数据保存到指定路径;选择 "使用 UTC 时间保存文件"以 UTC 时间命名保存的仿真文件。

图 13 保存点云数据

2. 默认点云数据为在软件安装目录的子目录 ISF 文件夹中,可通过"设置"菜单栏中的 "设置文件保存路径"更改点云数据保存目录。

图 14 更改点云数据保存目录

- 3. 在 R-Fans 连通状态下,选择"雷达"标签页,设置"雷达类型"为"回放模式",打开 "设置"菜单,点击"打开 ISF 数据"选择需要播放的 isf 数据,再点击"播放工具栏" 的▶按钮或点击控制面板"雷达"界面的开始按钮,即可回放保存好的 isf 数据。
- 4. 点击 ◀和 ▶按钮,播放上一个文件和下一个文件。
- 5. 在播放速度: x1 下拉菜单中,可进行播放速度选择。

点云显示设置

- 1. 有两种途径对实时点云显示进行设置,一种方式是在右击点云显示窗口弹出的右键菜单 栏中进行设置,另一种方式是在点云视图标签页中进行设置。
- 2. 右键点云显示窗口右半部分; 出现右键菜单栏, 在右键菜单栏中设置项见表 14:

表 14 右键菜单功能

功能	说明
隐藏/显示极坐标系 (直角坐标系) 网格	设置点云显示窗口的背景网格
复位原点	点击复位原点,点云显示窗口中 R-Fans 的位置自动移动至窗口坐标系原 点
显示模式	包括 Normal 模式、Laser Number(用不同颜色标记不同扫描线)、 Intense(用不同颜色标记回波强度)、Range(用不同颜色标记距离)、 change(用不同颜色标记发生变化的点)
视图	调整不同点云视图角度,可设置为顶视图、对角线视图、主视图
颜色	调整点云显示窗口的背景色(默认为黑色)

3. 点云视窗标签页见图 15~图 16,可以对雷达视图、扫描线、颜色、网格进行设置 状态监视 雷达 点云视窗

图 15 点云视窗标签页

		0模式	
颜色格式:	Blue>Green 🔻	可见: 🗌	
显示模式:	Normal -	步长:	1.00
网格选项			
字体大小	20.00	字体颜色	
网格宽度	0.50	网格颜色	
网格数量	40	网络模式	DotLine 🔹
工具选项			
帧数	1		
点云文本输出	选择区域	选择量表	距离显示

图 16 点云颜色、网格设置

功能说明见表 15

表 15 点云视窗标签页功能列表

功能	说明
视图角度控制	设置视角的 X、Y、Z 三个轴的转动角度调整视图角度
ISF 文件选项	设置保存的 isf 文件的大小(最大值 1024M)
扫描线选择	选择打勾的扫描线 ID 在点云显示窗口中显示,取消打勾则相应 ID 的扫描线 在点云显示窗口中不显示
颜色模式	选择和编辑点云颜色和参数(回波强度、扫描线 ID、测距等参数)对应序列
显示模式	包括 Normal 模式、Laser Number(用不同的颜色标记不同的扫描线)、 Intense(用颜色标记回波强度)、Range(用颜色标记距离)、change (用不同颜色标记发生变化的点)
步长	设置颜色和参数对应序列的步长
可见	设置在点云显示窗口显示或隐藏图例
网格选项	对点云视窗的网格和字体进行设置
点云文本输出	将连续帧的点云转换为文本数据
选择区域	在点云显示界面上选出部分点云转换为文本数据
选择量表	在该状态下,以鼠标为点云缩放中心; 在非"选择量表"状态下,以 R-Fans 坐标中心为点云缩放中心
距离显示	点云界面显示界面中心(白点)到 R-Fans 坐标中心的实际距离

配置工具

1. R-Fans 设备配置工具集成于 CtrlView 软件中。打开 CtrlView 软件,选择"设置—打 开配置工具",出现软件界面如下:

设置 帮助		
传输 ○ 串口 <u>com2</u> ● 网络	设备信息 SW: 301794510138 数据演口: 2014 日期: 2000/00/00 00:00:00 IF: 192.168.0.3 消息演出: 2015 电机转速: 4.9	修改
升级 参数 FFGA支型 ・ DEB ・ WTIC	路径:	····
治包在		
导航型		al

图 17 R-Fans 配置工具

- 2. 当设备通电并连接上位机后,设备信息栏会显示 R-Fans 设备信息。
- 3. 点击设备信息配置栏"修改"按钮,可在弹出对话框中修改设备的 MAC 地址、IP 地址、端口、默认电机转速、相位同步角等信息。

🔍 设备配置	?	\times
参数配置		
SN/Mac: 0x301F9A5		
□ IP地址: 192 🗣 168 🗣 0 😫	3	-
□ 目标主机: 255 🗣 255 🗣 255	255	-
目标主机MAC: FFFF	FFFFFFF	FF
□ 数据端口:	2014	-
□ 消息端口:	2015	-
🗌 心跳包端口:	2030	-
□ 角度范围: 0.00 €	360.00	-
□ 零位角: 0.00		-
□ 回波模式: 第一回波		•
□ 默认转速:		0
□ 相位同步角:		0
	配置	

图 18 R-Fans 设备配置

设备参数配置详情见表 16

表 16 设备参数配置说明

配置功能	说明
SN/Mac	修改设备的 MAC
IP 地址	修改设备的 IP 地址
目标主机	修改设备数据发送的目标主机 IP(255.255.255.255 为广播发送)
目标主机 MAC	修改设备数据发送的目标主机 MAC(目标主机 IP 不为广播时才可修改,跨网段 点播时需指定目标主机 MAC)
数据端口	修改设备的数据端口
消息端口	修改设备的消息端口
心跳包端口	修改设备的心跳包及参数配置反馈包端口
角度范围	修改设备所需裁剪的角度范围(可选范围为 0°-360°)
零位角	修改设备的零位角(可选范围为 0°-360°)
回波模式	修改设备回波模式(可选模式有:第一回波、最强回波、双回波、最远回波)
默认转速	修改设备的默认上电转速(可选转速有:0、5、10、20hz)
相位同步角	修改设备的相位同步角

本章主要用于介绍 RFans 激光雷达设备的常见问题 及排查方式。

常见问题

表 17 常见问题排查表

问题	分析及解决
	1.检查电源供电是否满足要求;
	2.检查上位机网卡是否可用;
于注闭信	3.检查上位机 IP 是否和设备 IP 在同一个子网内;
心云地后	4.检查网络中是否有其他计算机或设备 IP 地址冲;。
	5.检查防火墙是否已经设置允许程序访问网络;
	6.使用 wireshark 软件检查数据是否接收到数据。
	1.检查电源供电是否满足要求;
电机未运转	2.检查启动扫描命令是否正确;
	3.检查线缆是否连接正常。
	1.检查网络带宽是否满足数据采集需求;
粉捉汉住不正学式工物促出式	2.查看扫描区域内是否有物体遮挡;
奴佑木朱个山市以儿奴佑土风	3.其他导致数据采集不正常的原因较复杂,可联系我们详
	细描述问题出现过程及现象以获得解决方案。
于注升级国体武再实和黑	1.检查是否使用了具有 ConfigDevice 功能的软件。
儿女开纵回计线史利的目	2.检查串口连接和配置是否正确。

联系方式

北京北科天绘科技有限公司 地址:北京市海淀区永丰路 5 号院 1 号楼 502 室 联系电话: 010-58711158

北科天绘(合肥)激光技术有限公司 地址:合肥市包河经济开发区重庆路与延安路交口智汇工园一期 A2 栋 3-5 楼 电话: 0551-66167968

北科天绘(苏州)激光技术有限公司 地址:苏州工业园区金芳路 18 号东坊创智园地 B1 栋 6 楼 电话: 0512-62886015

Surestar International Inc. Address: 28287 Beck Road, Unit D3, Wixom, MI 48393 Tel: +248-773-7768

32 © 2020 北科天绘 版权所有